Skip to main content

Mini-tabs: Versatile Multiparticulate Option for Oral Drug Delivery

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Small mini tablets, commonly known as mini-tabs, are a versatile dosage form for oral drug delivery. Mini-tabs, though formulated and manufactured using the well-established tableting technology, are considered as multiparticulates and provide significant advantages over regular tablets. Mini-tabs may be used in the formulation and manufacture of different release profiles of the same drug substance, as well as fixed dose combinations of multiple drugs, and then packed into hard-shell capsules, sachets, or other finished dosage forms. They are excellent dosage form choice for pediatric drug products, as well as for better patient compliance due to easier swallowing. With the choice of excipients in the core, and/or application of appropriate functional coatings on the surface of mini-tabs, orally disintegrating, delayed, or extended release profiles are achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Riis T, Bauer-Brandl A, Wagner T, Kranz H. pH-independent drug release of an extremely poorly soluble weakly acidic drug from multiparticulate extended release formulations. Eur J Pharm Biopharm. 2007;65:78–84.

    Article  CAS  PubMed  Google Scholar 

  2. Colombo P, Conte U, Caramella C, Gazzaniga A, La Manna A. Compressed polymeric mini-matrices for drug release control. J Control Release. 1985;1:283–9.

    Article  CAS  Google Scholar 

  3. Gazzaniga A, Conte U, Colombo P, Sangalli ME, Caramella C, Colombo P, La Manna A. A multiple unit modified release system. Polymers in medicine III. Amsterdam: Elsevier; 1988. p. 201–8.

    Google Scholar 

  4. Lennartz P, Mielck JB. Minitableting: improving the compactability of paracetamol powder mixtures. Int J Pharm. 1998;173:75–85.

    Article  CAS  Google Scholar 

  5. Tissen C, Woertz K, Breitkreutz J, Kleinebudde P. Development of mini-tablets with 1 mm and 2 mm diameter. Int J Pharm. 2011;416(1):164–70.

    Article  CAS  PubMed  Google Scholar 

  6. Pich C, Moest T. Magensaftresistent überzogene zylindrische Pankreatin-Mikrotabletten. EP 0 166 315 B1. 1989.

    Google Scholar 

  7. Anand P, Sathurappan B, Sankaranarayanan A. Propafenone extended release composition, WO 2010043950 A2, 2010.

    Google Scholar 

  8. Butler J, Cumming I, Brown J, Wilding I, Devane JG. A novel multiunit controlled-release system. Pharm Tech. 1998;22:122–38.

    CAS  Google Scholar 

  9. Alderborn G. Tablets and compaction in pharmaceutics. Edinburg: Churchill; 2002. p. 397–440.

    Google Scholar 

  10. Y-h L, Zhu J-b. Modulation of combined-release behaviors from a novel “tablets-in-capsule system”. J Contr Rel. 2004;95:381–9.

    Article  Google Scholar 

  11. Ishida M, Abe K, Hashizume M, Kawamura M. A novel approach to sustained pseudoephedrine release: differentially coated mini-tablets in HPMC capsules. Int J Pharm. 2008;359(1–2):46–52.

    Article  CAS  PubMed  Google Scholar 

  12. Breitkreutz J, Wessel T, Boos J. Dosage forms for peroral administration to children. Paediatr Perinat Drug Ther. 1999;3:25–33.

    Google Scholar 

  13. Breitkreutz J, Boos J. Pediatric and geriatric drug delivery. Expert Opin Drug Deliv. 2007;4(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  14. Cram A, Breitkreutz J, Desset-Brethes S, Nun T, Tuleu C. Challenges of developing palatable oral pediatric formulations. Int J Pharm. 2009;365:1–3.

    Article  CAS  PubMed  Google Scholar 

  15. Bowles A, Keane J, Ernest T, Clapham D, Tuleu C. Specific aspects of gastro-intestinal transit in children for drug delivery design. Int J Pharm. 2010;395:37–43.

    Article  CAS  PubMed  Google Scholar 

  16. Ernest TB, Elder DP, Martini LG, Roberts M, Ford JL. Developing pediatric medicines: identifying the needs and recognizing the challenges. J Pharm Pharmacol. 2007;59:1043–55.

    Article  CAS  PubMed  Google Scholar 

  17. Stoltenberg I, Winzenburg G, Breitkreutz J. Solid oral dosage forms for children – formulations, excipients and acceptance issues. Eur Ind Pharm. 2011;8:4–7.

    Google Scholar 

  18. Thomson SA, Tuleu C, Wong IC, Keady S, Pitt KG, Sutcliffe AG. Minitablets: new modality to deliver medicines to preschool-aged children. Pediatrics. 2009;123(2):235–8.

    Article  Google Scholar 

  19. Spomer N, Klingmann V, Stoltenberg I, Lerch C, Meissner T, Breitkreutz J. Acceptance of uncoated mini-tablets in young children: results from a prospective exploratory cross-over study. Arch Dis Child. 2012;97:283–6.

    Article  PubMed  Google Scholar 

  20. Rouge N, Leroux J-C, Cole ET, Doelker E, Buri P. Prevention of the sticking tendency of floating minitablets filled into hard gelatin capsules. Eur J Pharm Biopharm. 1997;43:165–71.

    Article  CAS  Google Scholar 

  21. Hershberg EB. Apparatus for punching miniature tablets. US Patent 3 175 521, 30 Mar 1965.

    Google Scholar 

  22. Flemming J, Mielck JB. Requirements for the production of micro tablets: suitability of direct-compression excipients estimated from powder characteristics and flow rates. Drug Dev Ind Pharm. 1995;21:2239–51.

    Article  CAS  Google Scholar 

  23. De Brabander C, Vervaet C, Van den Mooter G, Remon JP. Hot melt extrusion for the making of sustained release mini-matrices based on ethyl cellulose. Proceedings of the 4th world meeting ADRITELF/APGI/APV, Florence, 8/11 April 2002.

    Google Scholar 

  24. De Brabander C, Vervaet C, Remon JP. Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion. J Control Rel. 2003;89:235–47.

    Article  CAS  Google Scholar 

  25. Verhoeven E, De Beer TR, Van den Mooter G, Remon JP, Vervaet C. Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion. Eur J Pharm Biopharm. 2008;69(1):312–9.

    Article  CAS  PubMed  Google Scholar 

  26. Verhoeven E, Siepmann F, De Beer TR, Van Loo D, Van den Mooter G, Remon JP, Siepmann J, Vervaet C. Modeling drug release from hot-melt extruded mini-matrices with constant and non-constant diffusivities. Eur J Pharm Biopharm. 2009;73(2):292–301.

    Article  CAS  PubMed  Google Scholar 

  27. De Brabander C, Vervaet C, Görtz JP, Remon JP, Berlo JA. Formulation and bioavailability of matrix mini-tablets based on starch/microcrystalline wax mixtures. Proceedings of the 34rd world meeting APV/APGI, Berlin, 3/6 April 2000.

    Google Scholar 

  28. Munday DL, Fassihi AR. Controlled release delivery: effect of coating composition on release characteristics of mini-tablets. Int J Pharm. 1989;52:109–14.

    Article  CAS  Google Scholar 

  29. Munday DL. A comparison of the dissolution characteristics of theophylline from film coated granules and mini-tablets. Drug Dev Ind Pharm. 1994;20(15):2369–79.

    Article  CAS  Google Scholar 

  30. Spadoni A, Funaro C, Genovesi A, Vecchio C. Evaluation of an alternative dosage form to enteric coated pellets containing ibuprofen: a case study. Pharm Proc. 2001:52–4.

    Google Scholar 

  31. Goole J, Hamdani J, Vanderbist F, Amighi K. In vitro and in vivo evaluation in healthy human volunteers of floating riboflavin minitablets. J Drug Del Sci Tech. 2006;16(5):351–6.

    Article  CAS  Google Scholar 

  32. Tomuta I, Leucuta SE. The influence of formulation factors on the kinetic release of metoprolol tartrate from prolong release coated minitablets. Dev Ind Pharm. 2007;33:1070–7.

    Article  CAS  Google Scholar 

  33. Vuong H, Levina M, Farrell T, Rajabi-Siahboomi AR. The influence of hydrophilic pore formers on metoprolol succinate release from mini-tabs coated with aqueous ethylcellulose dispersion. 37th annual meeting & exposition of the controlled release society, Portland, 2010.

    Google Scholar 

  34. Funaro C, Mondelli Giusi, Passerini N, Albertini B. Minitablets coated in a solid-wall pan for theophylline sustained-release capsules. Pharm Tech. 2010;6:38–42.

    Google Scholar 

  35. Vuong H, Levina M, Rajabi-Siahboomi AR. Investigation of enteric coating of mini-tabs using a perforated pan or a fluid-bed machine. 35th annual meeting & exposition of the controlled release society, New York, 2008.

    Google Scholar 

  36. Vuong H, Levina M, Rajabi-Siahboomi AR. Evaluation of the enteric performance of lansoprazole mini-tablets coated in a perforated pan. AAPS annual meeting and exposition, Atlanta, 2008.

    Google Scholar 

  37. Vuong H, Levina M, Rajabi-Siahboomi AR. The influence of in vitro dissolution method on lansoprazole release from enteric coated mini-tabs. 36th annual meeting & exposition of the controlled release society, Copenhagen, 2009.

    Google Scholar 

  38. Vecchio C, Spadoni A, Genovesi A. Comparison between gastroresistant pellets and minitablets prepared by coating with an innovative pan equipment. Proceedings of the 3rd world meeting APV/APGI, Berlin. 2000:871–2

    Google Scholar 

  39. Passerini N, Funaro C, Albertini B, Mondelli G, Rodriguez L. Directly compressed mini-tablets coated in a solid wall pan for the sustained release of drugs. 6th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology, Barcelona, 2008.

    Google Scholar 

  40. Cox PJ, Khan KA, Munday DL, Sujja-areevath J. Development and evaluation of a multiple-unit oral sustained release dosage form for S(+)-ibuprofen: preparation and release kinetics. Int J Pharm. 1999;193:73–84.

    Article  CAS  PubMed  Google Scholar 

  41. Dey NS, Majumdar S, Rao MEB. Multiparticulate drug delivery systems for controlled release. Trop J Pharm Res. 2008;7(3):1067–75.

    Article  Google Scholar 

  42. Lopes CM, Sousa Lobo JM, Pinto JF, Costa P. Compressed mini-tablets as a biphasic delivery system. Int J Pharm. 2006;323:93–100.

    Article  CAS  PubMed  Google Scholar 

  43. http://www.pharmaceutical-technology.com/contractors/drug_delivery/baldamedical/ – visited December 2015.

  44. SUPAC-MR: modified release solid oral dosage forms: scale-up and postapproval changes: chemistry, manufacturing, and controls: in vitro dissolution testing and in vivo bioequivalence documentation. Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration. September 1997.

    Google Scholar 

  45. Shah VP, Tsong Y, Sathe P, Liu J-P. In vitro dissolution profile comparison – statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15:889–96.

    Article  CAS  PubMed  Google Scholar 

  46. Costa P, Sousa Lobo JM. Influence of dissolution medium agitation on release profiles of sustained tablets. Drug Dev Ind Pharm. 2001;27:811–7.

    Article  CAS  Google Scholar 

  47. Fernández-Hervás MJ, Fell JT. 1997. Chitosan:USP pectin mixtures as coatings for colon specific drug delivery: in vitro evaluation using coated mini-tablets. Pharmaceutical Technology Conference and Exhibition, Athens, Greece

    Google Scholar 

  48. Leopold CS, Eikeler D. Drug release from Eudragit® E-coated mini tablets for colon targeting: in vitro study. Proceed Int’l Symp Control Rel Bioact Mater. 1998;25:856–7.

    Google Scholar 

  49. Mohamed FAA, Roberts M, Seton L, Ford JL, Levina M, Rajabi-Siahboomi AR. The influence of HPMC concentration on release of theophylline or hydrocortisone from extended-release mini-tablets. Drug Dev Ind Pharm. Posted online on 27 Apr 2012.

    Google Scholar 

  50. Mohamed FAA, Roberts M, Seton L, Ford JL, Levina M, Rajabi-Siahboomi AR. Production of extended release mini-tablets using directly compressible grades of HPMC. Drug Dev Ind Pharm. Posted online on 19 Oct 2012.

    Google Scholar 

  51. Mohamed FAA, Roberts M, Seton L, Ford JL, Levina M, Rajabi-Siahboomi AR. The effect of HPMC particle size on the drug release rate and the percolation threshold in extended-release mini-tablets. Drug Dev Ind Pharm. 2015;41(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  52. De Brabander C, Vervaet C, Görtz JP, Remon JP, Berlo JA. Bioavailability of ibuprofen from matrix mini-tablets based on a mixture of starch and microcrystalline wax. Int J Pharm. 2000;208:81–6.

    Article  CAS  PubMed  Google Scholar 

  53. Roberts M, Vellucci D, Mostafa S, Miolane C, Marchaud D. Development and evaluation of sustained-release Compritol® 888 ATO matrix mini-tablets. Drug Dev Ind Pharm. 2012;38(9):1068–76.

    Article  CAS  PubMed  Google Scholar 

  54. Sujja-Areevath J, Munday DL, Cox PJ, Khan KA. Release characteristics of diclofenac sodium from encapsulated natural gum mini-matrix formulations. Int J Pharm. 1996;139:53–62.

    Article  CAS  Google Scholar 

  55. Sujja-Areevath J, Munday DL, Cox PJ, Khan KA. Relationship between swelling, erosion and drug release in hydrophilic natural gum mini-matrix formulation. Eur J Pharm Sci. 1998;6:207–17.

    Article  CAS  PubMed  Google Scholar 

  56. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behavior, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3(6):198–204.

    Article  CAS  PubMed  Google Scholar 

  57. Vuong H, Levina M, Farrell T, Rajabi-Siahboomi AR. The investigation of the influence of aqueous ethylcellulose coating on the performance of hydrophilic polyethylene oxide mini-matrices containing a freely water soluble drug. 38th annual meeting & exposition of the controlled release society, National Harbor, Maryland, 2011.

    Google Scholar 

  58. Verhoeven E, Vervaet C, Remon JP. Xanthan gum to tailor drug release or sustained-release ethylcellulose mini-matrices prepared via hot-melt extrusion: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2006;63:320–30.

    Article  CAS  PubMed  Google Scholar 

  59. Pentikis HS, Simmons RD, Benedict MF, Hatch SJ. Methylphenidate bioavailability in adults when an extended-release multiparticulate formulation is administered sprinkled on food or as intact capsule. J Amer Acad Child Adolesc Psyc. 2002;41:443–9.

    Article  Google Scholar 

  60. Rouge N, Cole ET, Doelker E, Buri P. Screening of potentially floating excipients for minitablets. STP Pharm Sci. 1997;7:386–92.

    CAS  Google Scholar 

  61. Rouge N, Leroux J-C, Doelker E, Buri P, Cole ET. Floating minitablets filled into hard gelatine capsules. Proceed Intern Symp Control Rel Bioact Mater. 1994;21:722–3.

    Google Scholar 

  62. Lopes CM, Sousa Lobo JM, Costa P, Pinto JF. Directly compressed mini matrix tablets containing ibuprofen: preparation and evaluation of sustained release. Drug Dev Ind Pharm. 2006;32(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  63. Hebestreit PH. Osswald F, Widmaier R, Herting MG. 2010. Ludiflash® as excipient for pediatric use. 2nd conference of the European pediatric formulation initiative EU PFi, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Rajabi-Siahboomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Controlled Release Society

About this chapter

Cite this chapter

Levina, M., Voung, H., Rajabi-Siahboomi, A.R. (2017). Mini-tabs: Versatile Multiparticulate Option for Oral Drug Delivery. In: Rajabi-Siahboomi, A. (eds) Multiparticulate Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7012-4_5

Download citation

Publish with us

Policies and ethics