Skip to main content

Ethylcellulose Applications in Multiparticulate Systems

  • Chapter
  • First Online:
Multiparticulate Drug Delivery

Abstract

Ethylcellulose is a cellulose ether commonly used for barrier membrane coating of multiparticulates for modified release applications. Various attributes of ethylcellulose polymer and formulation factors may influence drug release from multiparticulate systems. Degree of substitution and viscosity grade (molecular weight) of ethylcellulose and solvent systems used for the coating process affect the resulting film properties. The formulation factors such as choice and level of plasticizer, pore former, and particle size of the substrates affect drug release characteristics. Coating process conditions such as product temperature, air flow, spray properties, and humidity of the inlet air all individually or interactively affect properties of the barrier membrane film and, therefore, functionality of the coated multiparticulates. This chapter provides an insight into the use and applications of ethylcellulose in barrier membrane coatings of multiparticulates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ETHOCEL Ethylcellulose polymers technical handbook, Dow Cellulosic, Available at: http://www.dow.com/dowwolff/en/pdf/192-00818.pdf. Accessed May 2016.

  2. Rekhi G, Jambhekar S. Ethylcellulose – a polymer review. Drug Dev Ind Pharm. 1995;21(1):61–77.

    Article  CAS  Google Scholar 

  3. Porter SC. Controlled release film coatings based on ethylcellulose. Drug Dev Ind Pharm. 1989;15(10):1495–521.

    Article  CAS  Google Scholar 

  4. Surelease, Ethylcellulose Dispersion Type B NF, Product information. Available at: http://www.colorcon.com/literature/marketing/mr/Extended%20Release/Surelease/English/pi_surelease_prod_info_v3_2016.pdf. Accessed May 2016.

  5. Rowe RC. Molecular weight studies on ethyl cellulose used in film coating. Acta Pharm Suec. 1982;19:157–60.

    CAS  Google Scholar 

  6. USP/NF, United States Pharmacopeia/National Formulary, monograph “ethylcellulose” and general chapter <911>, United States Pharmacopeial Convention, Inc., 12601 Twinbrook Parkway, Rockville, MD 20852.

    Google Scholar 

  7. Aquacoat ECD Technical Data. FMC BioPolymer. 2007.

    Google Scholar 

  8. Lecomte F, Siepmann J, Walther M, MacRae R, Bodmeier R. Polymer blends used for the coating of multiparticulates: comparison of aqueous and organic coating techniques. Pharm Res. 2004;21(5):882–90.

    Article  CAS  PubMed  Google Scholar 

  9. Onions A. Films from water – based colloidal dispersions. Manuf Chem. 1986;3:55–9 & 4, 66–7.

    Google Scholar 

  10. Steward PA, Hearn J, Wilkinson MC. An overview of polymer latex film formation and properties. Adv Colloid Interf Sci. 2000;865:195–267.

    Article  Google Scholar 

  11. Wheatley TA, Steuernagel CR. Latex emulsions for controlled drug delivery. In: JW MG, editor. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Marcel Dekker Inc.; 1997. p. 1–54.

    Google Scholar 

  12. Ozturk AG, Ozturk SS, Palsson BO, Wheatley TA, Dressman JB. Mechanism of release from pellets coated with an ethylcellulose-based film. J Control Release. 1990;14:203–13.

    Article  CAS  Google Scholar 

  13. Iyer U, Hong W-H, Das N, Ghebre-Sellassie I. Comparative evaluation of three organic solvent and dispersion-based ethylcellulose coating formulations. Pharm Technol. 1990;14(9):68–86.

    CAS  Google Scholar 

  14. Zhang G, Schwartz JB, Schnaare RL. Bead coating. I. Change in release kinetics (and mechanism) due to coating level. Pharm Res. 1991;8(3):331–5.

    Article  CAS  PubMed  Google Scholar 

  15. Rekhi GS, Porter SC, Jambhekar SS. Factors affecting the release of propranolol hydrochloride from beads coated with aqueous polymeric dispersions. Drug Dev Ind Pharm. 1995;21(6):709–29.

    Article  CAS  Google Scholar 

  16. Linsstedt B, Ragnarsson G, Hjartstam J. Osmotic pumping as a release mechanism for membrane coated drug formulations. Int J Pharm. 1989;56:261–8.

    Article  Google Scholar 

  17. Muschert S, Siepmann F, Leclerq B, Carlin B, Siepmann J. Prediction of drug release from ethylcellulose coated pellets. J Control Release. 2009;135:71–9.

    Article  CAS  PubMed  Google Scholar 

  18. Rowe RC. The effect of the molecular weight of ethyl cellulose on the drug release properties of mixed films of ethylcellulose and hydroxypropyl methylcellulose. Int J Pharm. 1986;29:37–41.

    Article  CAS  Google Scholar 

  19. Rowe RC. Molecular weight dependence of the properties of ethylcellulose and hydroxypropyl methylcellulose films. Int J Pharm. 1992;88:405–8.

    Article  CAS  Google Scholar 

  20. Dias VD, Ambudkar V, Vernekar P, Steffenino R, Rajabi-Siahboomi AR. The influence of molecular weight on drug release from ethylcellulose barrier membrane multiparticulates. Copenhagen: Controlled Release Society Annual Meeting and Exposition; 2009. Copenhagen, Denmark.

    Google Scholar 

  21. Hjartstam J, Borg K, Lindstedt B. The effect of tensile stress on permeability of free films of ethylcellulose containing hydroxypropyl methylcellulose. Int J Pharm. 1990;61:101–7.

    Article  Google Scholar 

  22. Jones D, Medlicott N. Casting solvent controlled release of chlorhexidine from ethylcellulose films prepared by solvent evaporation. Int J Pharm. 1995;114:257–61.

    Article  CAS  Google Scholar 

  23. Kent DJ, Rowe RC. Solubility studies on ethylcellulose used in film coating. J Pharm Pharmacol. 1978;30:808–10.

    Article  CAS  PubMed  Google Scholar 

  24. Arwidsson H, Nicklasson M. Application of intrinsic viscosity and interaction constant as a formulation tool for film coating. I. Studies on ethyl cellulose 10 cps in organic solvents. Int J Pharm. 1989;56:187–93.

    Article  CAS  Google Scholar 

  25. Arwidsson H, Nicklasson M. Application of intrinsic viscosity and interaction constant as a formulation tool for film coating. II. Studies on different grades of ethylcellulose in organic solvent systems. Int. J. Int J Pharm. 1990;58:73–7.

    Article  CAS  Google Scholar 

  26. Narisawa S, Yoshino H, Hirakawa Y, Noda K. Porosity-controlled ethylcellulose film coating. II. Spontaneous porous film formation in the spraying process and its solute permeability. Int J Pharm. 1993;104:95–106.

    Google Scholar 

  27. Guo JH. Investigating the effect of water on the porosity of polymer film for controlled drug delivery. Drug Dev Ind Pharm. 1994;20(16):2467–77.

    Article  CAS  Google Scholar 

  28. Dias VD, Ambudkar V, Fegely KA, Rajabi-Siahboomi AR. The influence of solvent type on extended release coating with ethylcellulose barrier membrane. New York: Controlled Release Society Annual Meeting and Exposition; 2008.

    Google Scholar 

  29. Lindholm T, Huhtikangas A, Saarikivi P. Organic solvent residues in free ethylcellulose films. Int J Pharm. 1984;21:119–21.

    Article  CAS  Google Scholar 

  30. Sakellariou P, Rowe RC, White EFT. An evaluation of the interaction and plasticizing efficiency of the polyethylene glycols in ethyl cellulose and hydroxypropyl methylcellulose films using torsional braid pendulum. Int J Pharm. 1986;31:55–64.

    Article  CAS  Google Scholar 

  31. Vesey CF, Farrell T, Rajabi-Siahboomi AR. Evaluation of alternative plasticizers for Surelease®, an aqueous ethylcellulose dispersion for modified release film coating. Miami: Controlled Release Society Annual Meeting and Exposition; 2005.

    Google Scholar 

  32. Rowe RC, Sheskey PJ, Owen SC, editors. Handbook of pharmaceutical excipients. London: Pharmaceutical Press; 2006.

    Google Scholar 

  33. Hyppölä R, Husson I, Sundholm F. Evaluation of physical properties of plasticized ethyl cellulose films cast from ethanol solution part I. Int J Pharm. 1996;133:161–70.

    Article  Google Scholar 

  34. Dias VD, Ambudkar V, Vernekar P, Steffenino R, Rajabi-Siahboomi AR. Influence of plasticizer type and level on drug release from ethylcellulose barrier membrane multi-particulates. Copenhagen: Controlled Release Society Annual Meeting and Exposition; 2009.

    Google Scholar 

  35. Ye Z, Rombout P, Remon JP, Vervaet C, Van den Mooter G. Correlation between the permeability of metoprolol tartrate through plasticized isolated ethylcellulose/hydroxypropyl methylcellulose films and drug release from reservoir pellets. Eur J Pharm Biopharm. 2007;67:485–90.

    Article  CAS  PubMed  Google Scholar 

  36. Sakellariou P, Rowe RC, White EFT. The thermomechanical properties and glass transition temperatures of some cellulose derivatives used in film coatings. Int J Pharm. 1985;27:267–77.

    Article  CAS  Google Scholar 

  37. Bodmeir R, Paeratakul O. The distribution of plasticizers between aqueous and polymer phases in aqueous colloidal polymer dispersions. Int J Pharm. 1994;103:47–54.

    Article  Google Scholar 

  38. Iyer U, Hong W, Das N, Ghebre-Sellassie I. Comparative evaluation of three organic solvent and dispersion-based ethylcellulose coating formulations. Pharm Tech. 1990;14:68–86.

    CAS  Google Scholar 

  39. Lippold BC, Lippold BH, Sutter BK, Gunder W. Properties of aqueous, plasticizer containing ethylcellulose dispersions and prepared films in respect to the production of oral extended release formulations. Drug Dev Ind Pharm. 1990;16(11):1725–47.

    Article  CAS  Google Scholar 

  40. Wesseling M, Bodmeier R. Influence of plasticization time, curing conditions, storage time, and core properties of the drug release from Aquacoat-coated pellets. Pharm Dev Technol. 2001;6(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  41. Bodmeir R, Paeratakul O. Leaching of water-soluble plasticizers from polymeric films prepared from aqueous colloidal polymer dispersions. Drug Dev Ind Pharm. 1992;18(17):1865–82.

    Article  Google Scholar 

  42. Frohoff-Hulsmann MA, Lippold BC, McGinity JW. Aqueous ethyl cellulose dispersion containing plasticizers of different water solubility and hydroxypropyl methyl-cellulose as coating material for diffusion pellets II: properties of sprayed films. Eur J Pharm Biopharm. 1999;48:67–75.

    Article  CAS  PubMed  Google Scholar 

  43. Hutchings D, Sakr A. Influence of pH and plasticizers on drug release from ethylcellulose pseudolatex coated pellets. J Pharm Sci. 1994;83(10):1386–90.

    Article  CAS  PubMed  Google Scholar 

  44. Munday DL, Fassihi AR. Controlled release delivery: effect of coating composition on release characteristics of mini-tablets. Int J Pharm. 1988;52:109–14.

    Article  Google Scholar 

  45. Lindholm T, Juslin M. Controlled release tablets- part 3: ethylcellulose coats containing surfactants and powdered matter. Pharm Ind. 1982;44(9):937–41.

    CAS  Google Scholar 

  46. Hjärtstam J, Hjertberg T. Swelling of pellets coated with a composite film containing ethylcellulose and hydroxypropyl methylcellulose. Int J Pharm. 1998;161:23–8.

    Article  Google Scholar 

  47. Dias VD, Ambudkar V, Stefennino R, Farrell T, Siahboomi AR. The influence of pore-former on drug release from ethylcellulose coated multiparticulates. Portland: Controlled Release Society Annual Meeting and Exposition; 2010.

    Google Scholar 

  48. Lindholm T, Lindholm B-A, Niskanen M, Koskiniemi J. Polysorbate 20 as a drug release regulator in ethyl cellulose film coatings. J Pharm Pharmacol. 1986;38:686–8.

    Article  CAS  PubMed  Google Scholar 

  49. Siew LF, Basit AW, Newton JM. The properties of amylose-ethylcellulose films cast from organic-based solvents as potential coatings for colonic drug delivery. Eu J Pharm Sci. 2000;11:133–9.

    Article  CAS  Google Scholar 

  50. Siew LF, Basit AW, Newton JM. The potential of organic-based amylose-ethylcellulose film coatings as oral colon-specific drug delivery systems. AAPS Pharm SciTech. 2000;1(3):E22.

    CAS  Google Scholar 

  51. Sakellariou P, Rowe RC. The morphology of blends of ethylcellulose with hydroxypropyl methylcellulose as used in film coating. Int J Phar. 1995;125:289–96.

    Article  CAS  Google Scholar 

  52. Sakellariou P, Rowe RC, White EFT. Polymer/polymer interaction in blends of ethylcellulose with both cellulose derivatives and polyethylene glycol 6000. Int J Pharm. 1986;34:93–103.

    Article  CAS  Google Scholar 

  53. Rowe RC. The prediction of compatibility/incompatibility in blends of ethylcellulose with hydroxypropyl methylcellulose or hydroxypropylcellulose using 2- dimensional solubility parameter maps. J Pharm Pharmacol. 1986;38:214–5.

    Article  CAS  PubMed  Google Scholar 

  54. Sadeghi F, Ford JL, Rubinstein MH, Rajabi-Siahboomi AR. Study of drug release from pellets coated with Surelease containing hydroxypropyl methylcellulose. Drug Dev Ind Pharm. 2000;27(5):419–30.

    Article  Google Scholar 

  55. Tang L, Schwartz JB, Porter SC, Schanaare RL, Wigent RJ. Drug release from film-coated chlorpheniramine maleate nonpareil beads: effect of water-soluble polymer, coating level, and soluble core material. Pharm Dev Tech. 2000;5(3):383–90.

    Article  CAS  Google Scholar 

  56. Yuen KH, Deshmukh AA, Newton JM. Development and in-vitro evaluation of a multiparticulate sustained release theophylline formulation. Drug Dev Ind Pharm. 1993;19(8):855–74.

    Article  CAS  Google Scholar 

  57. Milojevic S, Newton JM, Cummings JH, Gibson G, Botham RL, Ring SG, Allwood M, Stockham M. In vitro and in vivo evaluation of amylase coated pellets for colon specific drug delivery. Washington, DC: Proceed. Intern. Symp. Control. Rel. Bioact. Mater. Controlled Release Society; 1993.

    Google Scholar 

  58. Rohera BD, Parikh NH. Influence of type and level of water-soluble additives on drug release and surface and mechanical properties of Surelease films. Pharm Dev and Tech. 2002;7(4):421–32.

    Article  CAS  Google Scholar 

  59. Larsson M, Hjärtstam J, Berndtsson J, Stading M, Larsson A. Effect of ethanol on the water permeability of controlled release films composed of ethyl cellulose and hydroxypropyl cellulose. Eur J Pharm Biopharm. 2010;76(3):428–32.

    Article  CAS  PubMed  Google Scholar 

  60. Appel LE, Zentner GM. Use of modified ethylcellulose lattices for microporous coating of osmotic tablets. Pharm Res. 1991;8(5):600–4.

    Article  CAS  PubMed  Google Scholar 

  61. Lecomte F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. J Control Release. 2004;99:1–13.

    Article  CAS  PubMed  Google Scholar 

  62. Siepmann F, Hoffmann A, Leclercq B, Carlin B, Siepmann J. How to adjust desired drug release patterns from ethylcellulose-coated dosage forms. Int J Pharm. 2007;119(2):182–9.

    CAS  Google Scholar 

  63. Young C, Dietzsch C, Fegely K, Rajabi-Siahboomi A. The Influence of a pH dependent pore former on acid protection from tablets coated with an aqueous ethyl cellulose barrier membrane. Vienna: Controlled Release Society Annual Meeting and Exposition; 2006.

    Google Scholar 

  64. Macleod GS, Fell JT, Collett JH. Studies on the physical properties of mixed pectin/ethylcellulose films intended for colonic drug delivery. Int J Pharm. 1997;157:53–60.

    Article  CAS  Google Scholar 

  65. Ong KT, Rege PR, Rajabi-Siahboomi AR. Effect of hypromellose as a poreformer in aqueous ethylcellulose dispersion: characterization of dispersion properties. Vienna: Annual Meeting of the Controlled Release Society; 2006.

    Google Scholar 

  66. Wong D, Bodmeier R. Flocculation of an aqueous colloidal ethyl cellulose dispersion (Aquacoat) with a water-soluble polymer, hydroxypropyl methylcellulose. Eur J Biopharm. 1994;42(1):12–5.

    Google Scholar 

  67. Ong K, Rege PR, Rajabi-Siahboomi AR. Hypromellose as a pore former in aqueous ethylcellulose dispersion: stability and film properties. San Antonio: Annual Meeting of the American Association of Pharmaceutical Scientists; 2006.

    Google Scholar 

  68. Bodmeier R, Guo X, Paeratakul O. Process and formulation factors affecting the drug release from pellets coated with the ethylcellulose-pseudolatex Aquacoat. In: JW MG, editor. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Marcel Dekker Inc.; 1997. p. 55–80.

    Google Scholar 

  69. Frohoff-Hülsmann MA, Schmitz A, Lippold BC. Aqueous ethylcellulose dispersions containing plasticizers of different water solubility and hydroxypropyl methylcellulose as coating material for diffusion pellets. I Drug release from coated pellets. Int J Pharm. 1999;177:69–82.

    Article  PubMed  Google Scholar 

  70. Rajabi-Siahboomi AR, Fegely K, Ong KT. Compatibility of polymeric pore-formers with an aqueous ethylcellulose (EC) dispersion and their effects on film and drug release properties. Diego: Annual Meeting of the American Association of Pharmaceutical Scientists; 2007.

    Google Scholar 

  71. Chan LW, Ong KT, Heng PWS. Novel film modifiers to alter the physical properties of composite ethylcellulose films. Pharm Res. 2005;22(3):476–89.

    Article  CAS  PubMed  Google Scholar 

  72. Opadry EC. Ethylcellulose Organic Coating System, Colorcon, Inc. Available at: http://www.colorcon.com/literature/marketing/fc/Opadry%20EC/8523%20-%20Opadry%20EC%20Brochure%20V11%20web%20ready.pdf. Accessed on May 2016.

  73. Martin L, Teckoe J, Rajabi-Siahboomi AR. Effect of coating weight gain and pore-former level on drug release with a fully formulated ethylcellulose barrier membrane coating system. Orlando: American Association of Pharmaceutical Scientist Annual Meeting and Exposition; 2015.

    Google Scholar 

  74. Sadeghi F, Ford JL, Rajabi-Siahboomi A. The influence of drug type on the release profiles from Surelease-coated pellets. Int J Pharm. 2003;254(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  75. Nesbitt R, Mahjour M, Mills NL, Fawzi MB. Effect of substrate on mass release from ethylcellulose latex coated pellets. J Control Release. 1994;32(1):71–7.

    Article  CAS  Google Scholar 

  76. Porter SC, Ghebre-Sellassie I. Key factors in the development of modified-release pellets. In: Ghebre-Sellassie I, editor. Multiparticulate oral drug delivery: Informa Healthcare; 1994. p. 217–84.

    Google Scholar 

  77. Steffenino R, Rajabi-Siahboomi AR, Grasman N, Larsen P, Rogers T, Shrestha U, Wallick D. The Influence of coating system type on acetaminophen release from ethylcellulose barrier membrane coated multiparticulates. Portland: Annual Meeting of the Controlled Release Society; 2010.

    Google Scholar 

  78. Yang ST, Ghebre-Sellassie I. The effect of product bed temperature on the microstructure of Aquacoat-based controlled release coatings. Int J Pharm. 1990;60:109–24.

    Article  CAS  Google Scholar 

  79. Yang ST, Van Savage G, Weiss J, Ghebre-Sellassie I. The effect of spay mode and chamber geometry of fluid-bed coating equipment and other parameters on an aqueous-based ethylcellulose coating. Int J Pharm. 1992;86:247–57.

    Article  CAS  Google Scholar 

  80. Ragnarsson G, Joansson MO. Coated drug cores in multi-unit preparations- influence of particle size. Drug Dev Ind Pharm. 1988;14(15–17):2285–97.

    Article  CAS  Google Scholar 

  81. Jones DM. Factors to consider in fluid-bed processing. Pharm Technol. 1985;9(4):50–62.

    CAS  Google Scholar 

  82. Chang RK, Hsiao CH, Robinson JR. A review of aqueous coating techniques and preliminary data on release from a theophylline product. Pharm Technol. 1987;3:56–68.

    Google Scholar 

  83. Lippold BH, Sutter BK, Lippold BC. Parameters controlling drug release from pellets coated with aqueous ethyl cellulose dispersion. Int J Pharm. 1989;54:15–25.

    Article  CAS  Google Scholar 

  84. Gilligan CA, Po ALW. Factors affecting drug release from a pellet system coated with an aqueous colloidal dispersion. Int J Pharm. 1991;73:51–68.

    Article  CAS  Google Scholar 

  85. Arwidsson H, Hjelstuen O, Ingason D, Graffner C. Properties of ethylcellulose films from extended release; III. Influence of process factors when using aqueous dispersions. Acta Pharm Nord. 1991;3(4):223–8.

    CAS  Google Scholar 

  86. Vesey CF, Rizzo M, Rajabi-Siahboomi AR. Identification and influence of critical coating process parameters on drug release from a fully formulated aqueous ethylcellulose dispersion. San Diego: Annual Meeting and exposition of American Association of Pharmaceutical Society; 2007.

    Google Scholar 

  87. Arwidsson H. Properties of ethylcellulose films for extended release I. Influence of process factors when using organic solutions. Acta Pharm Nord. 1991;3(1):25–30.

    CAS  Google Scholar 

  88. Scattergood LK, Fegely KA, Rege PR, Ferrizzi DM, Rajabi-Siahboomi AR. Comparative study of theoretical versus actual weight gain for a Surelease barrier membrane on coated pellets. Baltimore: Annual Meeting and Exposition of American Association of Pharmaceutical Society; 2004.

    Google Scholar 

  89. Rekhi G, Mendes RW, Porter SC, Jambhekar SS. Aqueous polymeric dispersions for controlled drug delivery- Wurster process. Pharm Technol. 1989;3:112–25.

    Google Scholar 

  90. Yang QW, Flament MP, Siepmann F, Busignies V, Leclerc B, Herry C. Curing of aqueous polymeric film coatings: importance of the coating level and type of plasticizer. Eur J Pharm Biopharm. 2010;74:362–70.

    Article  CAS  PubMed  Google Scholar 

  91. Hutchings D, Kuzmak B, Sakr A. Processing considerations for an EC latex coating system: influence of curing time and temperature. Pharm Res. 1994;11(10):1474–8.

    Article  CAS  PubMed  Google Scholar 

  92. Bodmeier R, Paeratakul O. The effect of curing on drug release and morphological properties of ethylcellulose pseudo-latex coated beads. Drug Dev Ind Pharm. 1994;20(9):1517–33.

    Article  CAS  Google Scholar 

  93. Bodmeir R, Paeratakul O. Process and formulation variables affecting the drug release from chlorpheniramine maleate-loaded beads coated with commercial and self-prepared aqueous ethyl cellulose pseudolatexes. Int J Pharm. 1991;70:59–68.

    Article  Google Scholar 

  94. Wesseling M, Bodmeier R. Drug release from beads coated with an aqueous colloidal ethylcellulose dispersion, Aquacoat or an organic ethylcellulose solution. Eur J Pharm Biopharm. 1999;47:33–8.

    Article  CAS  PubMed  Google Scholar 

  95. Ong K, Rege PR, Rajabi-Siahboomi AR. Hypromellose as a pore-former in aqueous ethylcellulose dispersion: stability and film properties. Meeting of the American Association of Pharmaceutical Scientists, San Antonio. 2006.

    Google Scholar 

  96. Fu Y, Yang S, Jeong SH, Kimura S, Park K. Orally fast disintegrating tablets: developments, technologies, taste-masking and clinical studies. Crit Rev Ther Drug Carrier Syst. 2004;21(6):433.

    Article  CAS  PubMed  Google Scholar 

  97. Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm. 2004;30(5):429–48.

    Article  CAS  PubMed  Google Scholar 

  98. Zisowsky J, Krause A, Dingemanse J. Drug development for pediatric populations: regulatory aspects. Pharmaceutics. 2010;2(4):364–88.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ayenew Z, Puri V, Kumar L, Bansal AK. Trends in pharmaceutical taste masking technologies: a patent review. Recent Pat Drug Deliv Formul. 2009;3(1):26–39.

    Article  CAS  PubMed  Google Scholar 

  100. Thompson KC, Kaighn KN, Mukherjee IN, Diimmler CE, Weisser HT, Marncinelli C, inventors; Merck, Sharp & Dohme corp., assignee. Taste-masked formulation of raltegravir. United States patent application US20140242178 A1. 2014.

    Google Scholar 

  101. Mehta RY, Cunningham CR, Rajabi-Siahboomi AR. Evaluation of acetaminophen particle size and crystal morphology on taste-masking performance from coated granules and chewable tablets. Edinburgh: Control Released Society Annual Meeting and Exposition; 2015.

    Google Scholar 

  102. Pearnchob N, Bodmeier R. Coating of pellets with micronized ethylcellulose particles by a dry powder coating technique. Int J Pharm. 2003;268(1):1–1.

    Article  CAS  PubMed  Google Scholar 

  103. Pearnchob N, Bodmeier R. Dry polymer powder coating and comparison with conventional liquid-based coatings for Eudragit RS, ethylcellulose and shellac. Eur J Pharm Biopharm. 2003;56(3):363–9.

    Article  CAS  PubMed  Google Scholar 

  104. Kablitz CD, Urbanetz NA. Characterization of the film formation of the dry coating process. Eur J Pharm Biopharm. 2007;67(2):449–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Rajabi-Siahboomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Controlled Release Society

About this chapter

Cite this chapter

Rajabi-Siahboomi, A.R., Mehta, R.Y., Ambudkar, V., Dias, V., Tiwari, S. (2017). Ethylcellulose Applications in Multiparticulate Systems. In: Rajabi-Siahboomi, A. (eds) Multiparticulate Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7012-4_11

Download citation

Publish with us

Policies and ethics