Skip to main content

Application of Poly(meth)acrylate Copolymers for Oral Multiparticulate Drug Delivery Systems

  • Chapter
  • First Online:
Multiparticulate Drug Delivery

Abstract

Poly(meth)acrylates were introduced to the pharmaceutical market in 1954 for the use in oral dosage forms in order to replace time-consuming sugar coatings on tablets in the beginning, closely followed by more functional versions in order to create taste masked and protective coatings or enteric-coated as well as extended release-coated particles, but also for the creation of extended release matrix structures.

Newer developments cover the field of multilayered coatings for longer drug release, specific release profiles or a more precise targeting for regional drug release. Especially the latter can be influenced successfully by the addition of specific ions inside such coated dosage forms in order to create modified/pulsed drug release profiles for improved therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billmeyer Jr FW. Textbook of polymer science. New York: Interscience; 1971.

    Google Scholar 

  2. Holmes PF, Bohrer M, Kohn J. Exploration of poly(meth)acrylate structure-property correlations: advances towards combinatorial and high-throughput methods for biomaterials discovery. Prog Polym Sci. 2008;33(8):787–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albrecht K, Stickler M, Rhein T. Poly(meth)acrylates. Ullmann’s encyclopedia of industrial chemistry. Weinheim/Germany: Wiley-VCH; 2013.

    Google Scholar 

  4. Dittgen M, Durrani M, Lehmann K. Acrylic polymers – A review of pharmaceutical applications. S.T.P. Pharma Sci. 1997;7(6):403–37.

    CAS  Google Scholar 

  5. Shukla AJ. Poly(meth)acrylates. In: Wade A, Weller PJ, editors. Handbook of pharmaceutical excipients. Washington, DC/London: American Pharmaceutical Association/The Pharmaceutical Press; 1994. p. 362–6.

    Google Scholar 

  6. Eisele J, Haynes G, Rosamilia T. Characterisation and toxicological behaviour of basic methacrylate copolymer for GRAS evaluation. Regul Tox Pharmcol. 2011;61(1):32–43.

    Article  CAS  Google Scholar 

  7. Thakral S, Thakral NK, Majumdar DK. EUDRAGIT®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131–49.

    Article  CAS  PubMed  Google Scholar 

  8. Bettencourt A, Almeida AJ. Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul. 2012;29(4):353–67.

    Article  CAS  PubMed  Google Scholar 

  9. Fiume MZ. Final report on the safety assessment of acrylates copolymer and 33 related cosmetic ingredients. Int J Tox. 2002;21(3):1–50.

    Article  CAS  Google Scholar 

  10. Petereit HU, Weisbrod W. Formulation and process considerations affecting the stability of solid dosage forms formulated with methacrylate copolymers. Eur J Pharm Biopharm. 1999;47:15–25.

    Article  CAS  PubMed  Google Scholar 

  11. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  12. Hancock BC, Zografi G. The Relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  13. List PH, Kassis G. Water vapor and oxygen permeability of various tablet coatings. Acta Pharm Techn. 1982;28(1):21–33.

    CAS  Google Scholar 

  14. Schroeder IZ, Franke P, Schaefer UF, Lehr CM. Development and characterization of film forming polymeric solutions for skin drug delivery. Eur J Pharm Biopharm. 2007;65:111–21.

    Article  Google Scholar 

  15. Frickel H, Joshi S, Guha A, Jain V, Friebe T. Alcohol dose dumping (ADD) of modified release oral solid dosage forms: an analysis of physiological and regulatory aspects and robust formulations with EUDRAGIT® polymers. Scientific poster by Evonik Industries AG at ExcipientFest 2014. 2014. In www.eudragit.com/e-Lab.

  16. Joshi S, Jain V, Bear H, Guha A. Alcohol resistant modified release multiparticulates using EUDRAGIT® coatings. Scientific poster by Evonik Industries AG at AAPS. 2014. In www.eudragit.com/e-Lab.

  17. Bando H, McGinity JW. Physicochemical properties of enteric films prepared from aqueous dispersions and organic solutions. Int J Pharm. 2006;31:43–8.

    Article  Google Scholar 

  18. Wheatley TA, Steuernagel CR. Latex emulsion for controlled drug delivery. In: McGinity JW, editor. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Dekker M; 1997. p. 1–54.

    Google Scholar 

  19. Lehmann K. Chemistry and application properties of polymethacrylat coating systems. In: McGinity JW, editor. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Dekker M; 1997. p. 101–76.

    Google Scholar 

  20. Gruetzmann R, Wagner KG. Quantification of the leaching of triethyl citrate/polysorbate 80 mixtures from EUDRAGIT® RS films by differential scanning calorimetry. Eur J Pharm Biopharm. 2005;60(1):159–62.

    Article  CAS  PubMed  Google Scholar 

  21. Dassinger T, Rupp T, Baer H, Skalsky B, Meier C, Diebold D, Melichar M, Stahl H, Tschudin R. Scale-up study of propranolol sustained release pellets coated with EUDRAGIT® NE 30 D. Scientific poster by Evonik Industries AG at PBP Worldmeeting. 2010. In www.eudragit.com/e-Lab.

  22. Petereit HU. Presentation "Storage Stability of CR Formulations", International EUDRAGIT® Workshop on Controlled Release, Darmstadt, Germany. 2006.

    Google Scholar 

  23. Sood A, Ashokraj Y, Panchagnula R. Multiunit matrix based particulate systems (MUMPS) for controlled delivery of nifedipine. Formulation development using extrusion-spheronization and in vitro evaluation. Pharm Tech. 2004;28(11):84–102.

    CAS  Google Scholar 

  24. Bechgaard H, Nielsen G. Controlled release multiple units and single unit doses. Drug Dev Ind Pharm. 1978;4:53–7.

    Article  CAS  Google Scholar 

  25. Celik M. Multiparticulate oral drug delivery. New York: Marcel Dekker; 1994. p. 181.

    Book  Google Scholar 

  26. Shukla D, Chakraborty S, Singh S, Mishra B. Lipid-based oral multi-particulate formulations – advantages, technological advances and industrial applications. Expert Opin Drug Del. 2011;8(2):207–24.

    Article  CAS  Google Scholar 

  27. Swarbrick J, Boylan JC. Fluid bed dryer, granulator and coaters. Encyclopedia of pharmaceutical technology, Marcel Dekker Inc. N Y. 1992;6:171–3.

    Google Scholar 

  28. Petereit HU, Aßmus M, Lehmann K. Glyceryl monostearate as a glidant in aqueous film-coating formulations. Eur J Pharm Biopharm. 1995;41(4):219–28.

    CAS  Google Scholar 

  29. Tabasi SH, Moolchandani V, Fahmy R, Hoag SW. Sustained release dosage forms dissolution behavior prediction: a study of matrix tablets using NIR spectroscopy. Int J Pharm. 2009;382(1-2):1–6.

    Article  CAS  PubMed  Google Scholar 

  30. Dwibhashyam VSNM, Ratna JV. Key Formulation Variables in Tableting of Coated Pellets. Indian J Pharm Sci. 2008;70(5):555–64.

    Article  Google Scholar 

  31. Bodinge S, Chivate A, Jeste R, Patil P, Mali R. Increased film flexibility for enteric multi-particulate tablets with EUDRAGIT® polymer combinations. Poster: AAPS/PSWC; 2010. #W5457

    Google Scholar 

  32. Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5:994–1002.

    Article  CAS  PubMed  Google Scholar 

  33. Kulthe VV, Chaudhari PD, Chakraborty S. Utility of plasticised polymer in solid dispersions for solubility enhancement of thermosensitive and poorly soluble API. J Pharm Research. 2013;6(5):515–21.

    CAS  Google Scholar 

  34. Coupe AJ, Davis SS, Wilding IR. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res. 1991;8(3):360–4.

    Article  CAS  PubMed  Google Scholar 

  35. Bruce LD, Petereit HU, Beckert T, McGinity JW. Properties of enteric-coated sodium valproate pellets. Int J Pharm. 2003;264(1–2):85–96.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Arieta A, Torrado-Santiago D, Torrado JJ. Comparative study of aqueous and organic enteric coatings of chlorpheniramine maleate tablets. Drug Dev Ind Pharm. 1996;22(7):579–85.

    Article  CAS  Google Scholar 

  37. Lehmann K. Acrylic lattices from redispersible powders for peroral or transdermal drug formulations. Drug Dev Ind Pharm. 1986;12(3):265–87.

    Article  CAS  Google Scholar 

  38. Wesseling M, Kuppler F, Bodmeier R. Tackiness of acrylic and cellulosic polymer films used in the coating of solid dosage forms. Eur J Pharm Biopharm. 1999;47(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  39. Felton LA, McGinity JW. Influence of insoluble excipients on film coating systems. Drug Dev Ind Pharm. 2002;28(3):225–43.

    Article  CAS  PubMed  Google Scholar 

  40. Assmus M, Dassinger T, Galayo G, Skalsky B. Accurate GI targeting with EUDRAGIT® FS 30 D or L 30 D-55 mixtures. Poster: CRS; 2008.

    Google Scholar 

  41. Debunne A, Vervaet C, Remon JP. Development and in vitro evaluation of an enteric-coated multi-particulate drug delivery system for the administration of piroxicam to dogs. Eur J Pharm Biopharm. 2002;54(3):343–8.

    Article  CAS  PubMed  Google Scholar 

  42. Dukic-Ott A, De Beer T, Remon JP, Baeyens W, Foreman P, Vervaet C. In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation. Eur J Pharm Biopharm. 2008;70(1):302–12.

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. 2002;235(1-2):1–15.

    Article  CAS  PubMed  Google Scholar 

  44. Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci. 2003;6(1):33–66.

    CAS  PubMed  Google Scholar 

  45. David A, Yagen B, Sintov A, Rubinstein A. Acrylic polymers for colon-specific drug delivery. STP Pharma Sciences. 1997;7(6):546–54.

    CAS  Google Scholar 

  46. Qureshia AI, Cohen RD. Mesalamine delivery systems: do they really make much difference? Adv Drug Del Reviews. 2005;57:281–302.

    Article  Google Scholar 

  47. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull. 1999 Jun;46(3):183–96.

    CAS  PubMed  Google Scholar 

  48. Chuong MC, Christensen JM, Ayres JW. Sustained delivery of intact drug to the colon: mesalamine formulation and temporal gastrointestinal transit analysis. Pharm Dev Technol. 2009;14(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  49. Maroni A, Del Curto MD, Zema L, Foppoli A, Gazzaniga A. Film coatings for oral colon delivery. Int J Pharm. 2013;457(2):372–94.

    Article  CAS  PubMed  Google Scholar 

  50. Tuleu C, Andrieux C, Cherbuy C, Darcy-Vrillon B, Duée PH, Chaumeil JC. Colonic delivery of sodium butyrate via oral route: acrylic coating design of pellets and in vivo evaluation in rats. Methods find exp. Clin Pharmacol. 2001;23(5):245–53.

    CAS  Google Scholar 

  51. Akhgari A, Garekani HA, Sadeghi F, Azimaie M. Statistical optimization of indomethacin pellets coated with pH-dependent methacrylic polymers for possible colonic drug delivery. Int J Pharm. 2005;305(1–2):22–30.

    Article  CAS  PubMed  Google Scholar 

  52. Kayumba PC, Huyghebaert N, Cordella C, Ntawukuliryayo JD, Vervaet C, Remon JP. Quinine sulphate pellets for flexible pediatric drug dosing: Formulation development and evaluation of taste-masking efficiency using the electronic tongue. Eur J Pharm Biopharm. 2007;66(3):460–5.

    Article  CAS  PubMed  Google Scholar 

  53. Yan YD, Woo JS, Kang JH, Yong CS, Choi H-G. Preparation and evaluation of taste-masked donepezil hydrochloride orally disintegrating tablets. Biol Pharm Bull. 2010;33(8):1364–70.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson K, Hathaway R, Leung P, Franz R. Effect of triacetin and polyethylene glycol 400 on some physical properties of hydroxypropyl methylcellulose free films. Int J Pharm. 1991;73(3):197–208.

    Article  CAS  Google Scholar 

  55. Heinämäki JT, Lehtola V-M, Nikupaavo P, Yliruusi JK. The mechanical and moisture permeability properties of aqueous-based hydroxypropyl methylcellulose coating systems plasticized with polyethylene glycol. Int J Pharm. 1994;112:191–6.

    Article  Google Scholar 

  56. Bley O, Siepmann J, Bodmeier R. Characterization of moisture-protective polymer coatings using differential scanning calorimetry and dynamic vapor sorption. J Pharm Sci. 2009;98(2):651–64.

    Article  CAS  PubMed  Google Scholar 

  57. Forlizzi I. Comparison of protective coatings based on methacrylate copolymers, Pharmaceutical. Lisbon: Biopharmaceutical and Pharmaceutical technology conf; 2014.

    Google Scholar 

  58. Varum FJO, Merchant HA, Basit AW. Oral modified-release formulations in motion: the relationship between gastrointestinal transit and drug absorption. Int J Pharm. 2010;395(1-2):26–36.

    Article  CAS  PubMed  Google Scholar 

  59. Efentakis M, Koutlis A, Vlachou M. Development and evaluation of oral multiple-unit and single-unit hydrophilic controlled-release systems. AAPS PharmSciTech. 2000;1:62–70.

    Article  PubMed Central  Google Scholar 

  60. Lehmann K, Dreher D. Mixtures of aqueous poly(meth)acrylate dispersion for drug coating. Drugs Made Ger. 1988;31:101–2.

    CAS  Google Scholar 

  61. Siepmann F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends for controlled release coatings: J. Cont Rel. 2008;125:1–15.

    Article  CAS  Google Scholar 

  62. Zheng W, Sauer D, McGinity JW. Influence of hydroxyethylcellulose on the drug release properties of theophylline pellets coated with EUDRAGIT RS 30D. Eur J Pharm Biopharm. 2005;59(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  63. Munday DL. Film coated pellets containing verapamil hydrochloride: enhanced dissolution into neutral medium. Drug Dev Ind Pharm. 2003;29:575–83.

    Article  CAS  PubMed  Google Scholar 

  64. Semde R, Amighi K, Devleeschouwer MJ, Moes AJ. Effect of pectinolytic enzymes on the theophylline release from pellets coated with water insoluble polymers containing pectin HM or calcium pectinate. Int J Pharm. 2000;197(1-2):169–79.

    Article  CAS  PubMed  Google Scholar 

  65. Semde R, Amighi K, Devleeschouwer MJ, Moes AJ. Studies of pectin HM/EUDRAGIT® RL/EUDRAGIT® NE film-coating formulations intended for colonic drug delivery. Int J Pharm. 2000;197:181–92.

    Article  CAS  PubMed  Google Scholar 

  66. Bott C, Rudolph MW, Schneider ARJ, Schirrmacher S, Skalsky B, Petereit HU, Langguth P, Dressman JB, Stein J. In vivo evaluation of a novel pH and time-based multiunit colonic drug delivery system. Aliment Pharmacol Ther. 2004;20(3):347–53.

    Article  CAS  PubMed  Google Scholar 

  67. Beckert TE, Lynenskjold E, Petereit HU. Anionic influences on the release of EUDRAGIT® RS. Proceed Intl Symp. Control Rel Bioact Mater. 1997;24:1031–2.

    Google Scholar 

  68. Brown GL. Formation of films from polymer dispersions. J Polym Sci. 1956;22:423–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresia Kuntz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Controlled Release Society

About this chapter

Cite this chapter

Kuntz, T., Weisbrod, W., Chakraborty, S., Skalsky, B. (2017). Application of Poly(meth)acrylate Copolymers for Oral Multiparticulate Drug Delivery Systems. In: Rajabi-Siahboomi, A. (eds) Multiparticulate Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7012-4_10

Download citation

Publish with us

Policies and ethics