Skip to main content

Rates of Convergence for Empirical Spectral Measures: A Soft Approach

  • Conference paper
  • First Online:
Convexity and Concentration

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 161))

Abstract

Understanding the limiting behavior of eigenvalues of random matrices is the central problem of random matrix theory. Classical limit results are known for many models, and there has been significant recent progress in obtaining more quantitative, non-asymptotic results. In this paper, we describe a systematic approach to bounding rates of convergence and proving tail inequalities for the empirical spectral measures of a wide variety of random matrix ensembles. We illustrate the approach by proving asymptotically almost sure rates of convergence of the empirical spectral measure in the following ensembles: Wigner matrices, Wishart matrices, Haar-distributed matrices from the compact classical groups, powers of Haar matrices, randomized sums and random compressions of Hermitian matrices, a random matrix model for the Hamiltonians of quantum spin glasses, and finally the complex Ginibre ensemble. Many of the results appeared previously and are being collected and described here as illustrations of the general method; however, some details (particularly in the Wigner and Wishart cases) are new.

Our approach makes use of techniques from probability in Banach spaces, in particular concentration of measure and bounds for suprema of stochastic processes, in combination with more classical tools from matrix analysis, approximation theory, and Fourier analysis. It is highly flexible, as evidenced by the broad list of examples. It is moreover based largely on “soft” methods, and involves little hard analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. W. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  2. R. Bhatia. Matrix Analysis, volume 169 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997.

    Google Scholar 

  3. D. Buzinski and E. S. Meckes. Almost sure convergence in quantum spin glasses. J. Math. Phys., 56(12), 2015.

    Google Scholar 

  4. S. Chatterjee. Concentration of Haar measures, with an application to random matrices. J. Funct. Anal., 245(2):379–389, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Chatterjee and M. Ledoux. An observation about submatrices. Electron. Commun. Probab., 14:495–500, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Dallaporta. Eigenvalue variance bounds for Wigner and covariance random matrices. Random Matrices Theory Appl., 1(3):1250007, 28, 2012.

    Google Scholar 

  7. S. Dallaporta. Eigenvalue variance bounds for covariance matrices. Markov Process. Related Fields, 21(1):145–175, 2015.

    MathSciNet  MATH  Google Scholar 

  8. K. R. Davidson and S. J. Szarek. Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I, pages 317–366. North-Holland, Amsterdam, 2001.

    Google Scholar 

  9. P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. J. Appl. Probab., 31A:49–62, 1994. Studies in applied probability.

    Google Scholar 

  10. R. Dudley. V. N. Sudakov’s work on expected suprema of Gaussian processes. In Proceedings of High Dimensional Probability VII: The Cargse Volume, volume 71 of Progress in Probability, pages 37–43. Birkhuser, Basel, 2016.

    Google Scholar 

  11. F. J. Dyson. Correlations between eigenvalues of a random matrix. Comm. Math. Phys., 19:235–250, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Erdős and D. Schröder. Phase transition in the density of states of quantum spin glasses. Math. Phys. Anal. Geom., 17(3–4):441–464, 2014.

    MathSciNet  MATH  Google Scholar 

  13. L. Erdős and H.-T. Yau. Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. (N.S.), 49(3):377–414, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Erdős, H.-T. Yau, and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math., 229(3):1435–1515, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  16. P. J. Forrester and E. M. Rains. Interrelationships between orthogonal, unitary and symplectic matrix ensembles. In Random matrix models and their applications, volume 40 of Math. Sci. Res. Inst. Publ., pages 171–207. Cambridge Univ. Press, Cambridge, 2001.

    Google Scholar 

  17. F. Götze and A. Tikhomirov. Optimal bounds for convergence of expected spectral distributions to the semi-circular law. To appear in Probab. Theory Related Fields.

    Google Scholar 

  18. F. Götze and A. Tikhomirov. The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math., 3(4):666–704 (electronic), 2005.

    Google Scholar 

  19. N. Gozlan. A characterization of dimension free concentration in terms of transportation inequalities. Ann. Probab., 37(6):2480–2498, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Gozlan, C. Roberto, and P.-M. Samson. From dimension free concentration to the Poincaré inequality. Calc. Var. Partial Differential Equations, 52(3–4):899–925, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Gromov and V. D. Milman. A topological application of the isoperimetric inequality. Amer. J. Math., 105(4):843–854, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Guionnet and O. Zeitouni. Concentration of the spectral measure for large matrices. Electron. Comm. Probab., 5:119–136 (electronic), 2000.

    Google Scholar 

  23. J. Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist., 41(2):151–178, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes and independence. Probab. Surv., 3:206–229, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Kargin. A concentration inequality and a local law for the sum of two random matrices. Probab. Theory Related Fields, 154(3–4):677–702, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  26. N. M. Katz and P. Sarnak. Random Matrices, Frobenius Eigenvalues, and Monodromy, volume 45 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1999.

    Google Scholar 

  27. J. P. Keating, N. Linden, and H. J. Wells. Spectra and eigenstates of spin chain Hamiltonians. Comm. Math. Phys., 338(1):81–102, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Ledoux. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  29. M. Ledoux. Deviation inequalities on largest eigenvalues. In Geometric Aspects of Functional Analysis, volume 1910 of Lecture Notes in Math., pages 167–219. Springer, Berlin, 2007.

    Google Scholar 

  30. M. Ledoux. γ 2 and Γ 2. Unpublished note, available at http://perso.math.univ-toulouse.fr/ledoux/files/2015/06/gGamma2.pdf, 2015.

  31. M. Ledoux and B. Rider. Small deviations for beta ensembles. Electron. J. Probab., 15:no. 41, 1319–1343, 2010.

    Google Scholar 

  32. V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 72 (114):507–536, 1967.

    MathSciNet  Google Scholar 

  33. E. Meckes. Approximation of projections of random vectors. J. Theoret. Probab., 25(2): 333–352, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Meckes. Projections of probability distributions: a measure-theoretic Dvoretzky theorem. In Geometric Aspects of Functional Analysis, volume 2050 of Lecture Notes in Math., pages 317–326. Springer, Heidelberg, 2012.

    Google Scholar 

  35. E. S. Meckes and M. W. Meckes. Another observation about operator compressions. Proc. Amer. Math. Soc., 139(4):1433–1439, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. S. Meckes and M. W. Meckes. Concentration and convergence rates for spectral measures of random matrices. Probab. Theory Related Fields, 156(1–2):145–164, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  37. E. S. Meckes and M. W. Meckes. Spectral measures of powers of random matrices. Electron. Commun. Probab., 18:no. 78, 13, 2013.

    Google Scholar 

  38. E. S. Meckes and M. W. Meckes. A rate of convergence for the circular law for the complex Ginibre ensemble. Ann. Fac. Sci. Toulouse Math. (6), 24(1):93–117, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. L. Mehta. Random Matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, 2004.

    Google Scholar 

  40. S. Ng and M. Walters. A method to derive concentration of measure bounds on Markov chains. Electron. Comm. Probab., 20(95), 2015.

    Google Scholar 

  41. S. O’Rourke. Gaussian fluctuations of eigenvalues in Wigner random matrices. J. Stat. Phys., 138(6):1045–1066, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. M. Rains. Images of eigenvalue distributions under power maps. Probab. Theory Related Fields, 125(4):522–538, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Speicher. Free convolution and the random sum of matrices. Publ. Res. Inst. Math. Sci., 29(5):731–744, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Talagrand. Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, volume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Heidelberg, 2014.

    Google Scholar 

  45. T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics up to the edge. Comm. Math. Phys., 298(2):549–572, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics. Acta Math., 206(1):127–204, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Tao and V. Vu. Random matrices: sharp concentration of eigenvalues. Random Matrices Theory Appl., 2(3):1350007, 31, 2013.

    Google Scholar 

  48. J. A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning, 8(1–2), 2015.

    Google Scholar 

  49. R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing, pages 210–268. Cambridge Univ. Press, Cambridge, 2012.

    Google Scholar 

  50. C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  51. D. Voiculescu. Limit laws for random matrices and free products. Invent. Math., 104(1): 201–220, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  52. E. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. (2), 62:548–564, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Wigner. On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2), 67:325–327, 1958.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by grants from the U.S. National Science Foundation (DMS-1308725 to E.M.) and the Simons Foundation (#315593 to M.M.). This paper is an expansion of the first-named author’s talk at the excellent workshop “Information Theory and Concentration Phenomena” at the Institute for Mathematics and its Applications, as part of the IMA Thematic Year on Discrete Structures: Analysis and Applications. The authors thank the IMA for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Meckes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this paper

Cite this paper

Meckes, E.S., Meckes, M.W. (2017). Rates of Convergence for Empirical Spectral Measures: A Soft Approach. In: Carlen, E., Madiman, M., Werner, E. (eds) Convexity and Concentration. The IMA Volumes in Mathematics and its Applications, vol 161. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7005-6_5

Download citation

Publish with us

Policies and ethics