Skip to main content

Structured Random Matrices

  • Conference paper
  • First Online:
Book cover Convexity and Concentration

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 161))

Abstract

Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first inequality follows by noting that for every v ∈ B, choosing \(\tilde{v} \in B_{\varepsilon }\) such that \(\|v -\tilde{ v}\| \leq \varepsilon\), we have \(\vert \langle v,Xv\rangle \vert = \vert \langle \tilde{v},X\tilde{v}\rangle +\langle v -\tilde{ v},X(v +\tilde{ v})\rangle \vert \leq \vert \langle \tilde{v},X\tilde{v}\rangle \vert + 2\varepsilon \|X\|\).

  2. 2.

    For reasons that will become evident in the proof, it is essential to consider (complex) unitary matrices U 1 ,U 2 ,U 3 , despite that all the matrices A k and X are assumed to be real.

References

  1. Agarwal, N., Kolla, A., Madan, V.: Small lifts of expander graphs are expanding (2013). Preprint arXiv:1311.3268

    Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Bai, Z.D., Silverstein, J.W.: No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 (1), 316–345 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandeira, A.S., Van Handel, R.: Sharp nonasymptotic bounds on the norm of random matrices with independent entries. Ann. Probab. (2016). To appear

    Google Scholar 

  5. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  6. Chevet, S.: Séries de variables aléatoires gaussiennes à valeurs dans \(E\hat{ \otimes }_{\varepsilon }F\). Application aux produits d’espaces de Wiener abstraits. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), pp. Exp. No. 19, 15. École Polytech., Palaiseau (1978)

    Google Scholar 

  7. Dirksen, S.: Tail bounds via generic chaining. Electron. J. Probab. 20, no. 53, 29 (2015)

    Google Scholar 

  8. Erdős, L., Yau, H.T.: Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. (N.S.) 49 (3), 377–414 (2012)

    Google Scholar 

  9. Gordon, Y.: Some inequalities for Gaussian processes and applications. Israel J. Math. 50 (4), 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koltchinskii, V., Lounici, K.: Concentration inequalities and moment bounds for sample covariance operators. Bernoulli (2016). To appear

    Google Scholar 

  11. Latała, R.: Some estimates of norms of random matrices. Proc. Amer. Math. Soc. 133 (5), 1273–1282 (electronic) (2005)

    Google Scholar 

  12. Ledoux, M., Talagrand, M.: Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23. Springer-Verlag, Berlin (1991). Isoperimetry and processes

    Google Scholar 

  13. Lust-Piquard, F.: Inégalités de Khintchine dans C p  (1 < p < ). C. R. Acad. Sci. Paris Sér. I Math. 303 (7), 289–292 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Mackey, L., Jordan, M.I., Chen, R.Y., Farrell, B., Tropp, J.A.: Matrix concentration inequalities via the method of exchangeable pairs. Ann. Probab. 42 (3), 906–945 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marcus, A.W., Spielman, D.A., Srivastava, N.: Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem. Ann. of Math. (2) 182 (1), 327–350 (2015)

    Google Scholar 

  16. Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and analysis (Varenna, 1985), Lecture Notes in Math., vol. 1206, pp. 167–241. Springer, Berlin (1986)

    Google Scholar 

  17. Pisier, G.: Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol. 294. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  18. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, New York-London (1975)

    Google Scholar 

  19. Riemer, S., Schütt, C.: On the expectation of the norm of random matrices with non-identically distributed entries. Electron. J. Probab. 18, no. 29, 13 (2013)

    Google Scholar 

  20. Rudelson, M.: Almost orthogonal submatrices of an orthogonal matrix. Israel J. Math. 111, 143–155 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seginer, Y.: The expected norm of random matrices. Combin. Probab. Comput. 9 (2), 149–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sodin, S.: The spectral edge of some random band matrices. Ann. of Math. (2) 172 (3), 2223–2251 (2010)

    Google Scholar 

  23. Srivastava, N., Vershynin, R.: Covariance estimation for distributions with 2 +ɛ moments. Ann. Probab. 41 (5), 3081–3111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Talagrand, M.: Upper and lower bounds for stochastic processes, vol. 60. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  25. Tao, T.: Topics in random matrix theory, Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence, RI (2012)

    Book  Google Scholar 

  26. Tao, T., Vu, V.: Random matrices: the universality phenomenon for Wigner ensembles. In: Modern aspects of random matrix theory, Proc. Sympos. Appl. Math., vol. 72, pp. 121–172. Amer. Math. Soc., Providence, RI (2014)

    Google Scholar 

  27. Tomczak-Jaegermann, N.: The moduli of smoothness and convexity and the Rademacher averages of trace classes S p (1 ≤ p < ). Studia Math. 50, 163–182 (1974)

    MathSciNet  MATH  Google Scholar 

  28. Tropp, J.: An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning (2015)

    Google Scholar 

  29. Tropp, J.: Second-order matrix concentration inequalities (2015). Preprint arXiv:1504.05919

    Google Scholar 

  30. Van Handel, R.: Chaining, interpolation, and convexity. J. Eur. Math. Soc. (2016). To appear

    Google Scholar 

  31. Van Handel, R.: On the spectral norm of Gaussian random matrices. Trans. Amer. Math. Soc. (2016). To appear

    Google Scholar 

  32. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Compressed sensing, pp. 210–268. Cambridge Univ. Press, Cambridge (2012)

    Google Scholar 

Download references

Acknowledgements

The author warmly thanks IMA for its hospitality during the annual program “Discrete Structures: Analysis and Applications” in Spring 2015. The author also thanks Markus Reiß for the invitation to lecture on this material in the 2016 spring school in Lübeck, Germany, which further motivated the exposition in this chapter. This work was supported in part by NSF grant CAREER-DMS-1148711 and by ARO PECASE award W911NF-14-1-0094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon van Handel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this paper

Cite this paper

van Handel, R. (2017). Structured Random Matrices. In: Carlen, E., Madiman, M., Werner, E. (eds) Convexity and Concentration. The IMA Volumes in Mathematics and its Applications, vol 161. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7005-6_4

Download citation

Publish with us

Policies and ethics