Advertisement

Long Time Dynamics and Coherent States in Nonlinear Wave Equations

Chapter
Part of the Fields Institute Communications book series (FIC, volume 79)

Abstract

We discuss recent progress in finding all coherent states supported by nonlinear wave equations, their stability and the long time behavior of nearby solutions.

References

  1. 1.
    R. A. Adams, Sobolev Spaces. Academic Press, New York, 1975.zbMATHGoogle Scholar
  2. 2.
    A. Ambrosetti, M. Badiale, S. Cingolani, “Semiclassical states of nonlinear Schrödinger equations with bounded potentials”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7 (1996), no. 3, 155–160.Google Scholar
  3. 3.
    W.H. Aschbacher, J. Fröhlich, G.M. Graf, K. Schnee, and M. Troyer, “Symmetry breaking regime in the nonlinear hartree equation”, J. Math. Phys. 43, 3879–3891 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D. Bambusi, S. Cuccagna, “On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential”, Amer. J. Math. 133 (2011), no. 5, 1421–1468.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. Benci, D. Fortunato, Variational methods in nonlinear field equations. Solitary waves, hylomorphic solitons and vortices. Springer Monographs in Mathematics. Springer Cham Heidelberg New York Dordrecht London, 2014.Google Scholar
  6. 6.
    H. Berestycki, P.-L. Lion, “Nonlinear scalar field equations”, Arch. Ration. Mech. Anal. 82 (1983) 313–375.Google Scholar
  7. 7.
    N. Boussaid, E. Kirr, “Asymptotic stability of ground states in Dirac equation”, in preparation.Google Scholar
  8. 8.
    B. Buffoni, J. Toland, Analytic theory of global bifurcation. An introduction. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2003.Google Scholar
  9. 9.
    V. S. Buslaev, G. S. Perelman, “Scattering for the nonlinear Schrödinger equation: states that are close to a soliton”. St. Petersburg Math. J. 4 (1993), no. 6, 1111–1142.Google Scholar
  10. 10.
    V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”. Nonlinear evolution equations, 75–98, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995.Google Scholar
  11. 11.
    V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 3, 419–475.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    T. Cazenave, Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics (New York University Courant Institute of Mathematical Sciences, New York, 2003).Google Scholar
  13. 13.
    S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math. 54 (2001), 1110–1145.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. Cuccagna, T. Mizumachi, “On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations”, Comm. Math. Phys. 284 (2008), no. 1, 51–77.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Floer and A. Weinstein, “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal. 69, 397–408 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Golubitsky, I. Stewart, D. G. Schaeffer, Singularities and groups in bifurcation theory, Vol. II. Applied Mathematical Sciences, 69, Springer-Verlag, New York, 1988.Google Scholar
  17. 17.
    M. Grillakis, “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Comm. Pure Appl. Math. 41, 747–774 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I,”, J. Funct. Anal. 74 (1987), no. 1, 160–197.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal. 94 (1990), no. 2, 308–348.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Y. Guo, R. Seiringer, “On the mass concentration for Bose-Einstein condensates with attractive interactions.” Lett. Math. Phys. 104 (2014), no. 2, 141–156.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S. Gustafson, K. Nakanishi, T.-P. Tsai, “Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves”. Int. Math. Res. Not. 2004, no. 66, 3559–3584.Google Scholar
  22. 22.
    R. K. Jackson, communication at SIAM Conference on Nonlinear Waves, Philadelphia, Aug. 2010.Google Scholar
  23. 23.
    R. K. Jackson, M. I. Weinstein, “Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation.” J. Statist. Phys. 116 (2004), no. 1–4, 881–905.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    H. Jeanjean, M. Lucia and C. Stuart, “Branches of solutions to semilinear elliptic equations on \({R}^{N}\)”, Math. Z. 230, 79–105 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. Jeanjean, M. Lucia and C. Stuart, “ The branche of positive solutions to a semilinear elliptic equation on \({R}^{N}\)”, Rend. Sem. Mat. Univ. Padova, 101, 229–262 (1999).MathSciNetzbMATHGoogle Scholar
  26. 26.
    P.G. Kevrekidis, R. Carretero-González, D.J. Frantzeskakis, “Vortices in Bose-Einstein Condensates: (Super)fluids with a twist”, SIAM Dynamical Systems Magazine, October, 2011.zbMATHGoogle Scholar
  27. 27.
    E.W. Kirr, P.G. Kevrekidis, E. Shlizerman, and M.I. Weinstein, “Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross–Pitaevskii equations”, SIAM J. Math. Anal. 40, 56–604 (2008).CrossRefzbMATHGoogle Scholar
  28. 28.
    E. Kirr, P.G. Kevrekidis, D. Pelinovsky, “Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials”, Commun. Math. Phys. 308 (2011), 795–844CrossRefzbMATHGoogle Scholar
  29. 29.
    E. Kirr, A. Zarnescu, On the asymptotic stability of bound states in 2D cubic Schrödinger equation Comm. Math. Phys. 272 (2007), no. 2, 443–468.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    E. Kirr, A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases, J. Differential Equations 247 (2009), no. 3, 710–735.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    E. Kirr, A. Zarnescu, Asymptotic stability of large ground states in nonlinear Schrödinger equation, in preparation.Google Scholar
  32. 32.
    E. Kirr and Ö. Mızrak, “Asymptotic stability of ground states in 3d nonlinear Schrödinger equation including subcritical cases”, J. Funct. Anal. 257, 3691–3747 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    E. Kirr and Ö Mızrak, “ On the stability of ground states in 4D and 5D nonlinear Schrödinger equation including subcritical cases” submitted to Int. Math. Res. Not. available online at: http://arxiv.org/abs/0906.3732
  34. 34.
    E. Kirr, P.G. Keverekidis and V. Natarajan, “Bifurcations of large ground states in one dimensional nonlinear Schrödinger equation”, in preparation.Google Scholar
  35. 35.
    E. Kirr and V. Natarajan, “The global bifurcation picture for coherent states in nonlinear Schrödinger equation”, in preparation.Google Scholar
  36. 36.
    P.-L. Lions, “The concentration-compactness principle in the calculus of Variations. The locally compact case. I.” Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 109–145.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    P.-L. Lions, “The concentration-compactness principle in the calculus of Variations. The locally compact case. II.” Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 223–283.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    J.L. Marzuola and M.I. Weinstein, “Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross–Pitaevskii equations”, DCDS-A, to be published (2010).zbMATHGoogle Scholar
  39. 39.
    T. Mizumachi, “Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 48 (2008), 471–497.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    T. Mizumachi, “Asymptotic stability of small solitons for 2D Nonlinear Schrödinger equations with potential”, J. Math. Kyoto Univ. 47 (2007), no. 3, 599–620.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    L. Nirenberg, Topics in nonlinear functional analysis, Courant Lecture Notes 6 (New York, 2001).Google Scholar
  42. 42.
    E. S. Noussair, S. Yan, “On positive multipeak solutions of a nonlinear elliptic problem.” J. London Math. Soc. (2) 62 (2000), no. 1, 213–227.Google Scholar
  43. 43.
    Y.-G. Oh, “On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential”, Comm. Math. Phys. 131 (1990), no. 2, 223–253.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    C.A. Pillet, C.E. Wayne, “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Diff. Eqs. 141, 310–326 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems,” J. Functional Anal. 7 (1971), 487–513.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. Analysis of Operators. Volume IV. Academic Press San Diego New York Boston London Sydney Tokyo Toronto, 1972.Google Scholar
  47. 47.
    H.A. Rose and M.I. Weinstein, “On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D 30, 207–218 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    I. M. Sigal, G. Zhou, “Asymptotic stability of nonlinear Schrödinger equations with potential”. Rev. Math. Phys. 17 (2005), no. 10, 1143–1207.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    A. Soffer and M.I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys. 133, 119–146 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    A. Soffer and M.I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data” J. Diff. Eqs. 98, 376–390 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    A. Soffer, M. I. Weinstein, Selection of the ground state for nonlinear Schroedinger equations, Rev. Math. Phys. 16 (2004), no. 8, 977–1071.MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    T.-P. Tsai, H.-T. Yau, Horng-Tzer Relaxation of excited states in nonlinear Schrödinger equations, Int. Math. Res. Not. 31 (2002), 1629–1673.CrossRefzbMATHGoogle Scholar
  53. 53.
    T.-P. Tsai, H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations. Comm. Partial Differential Equations 27 (2002), no. 11–12, 2363–2402.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    T.-P. Tsai, H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data. Adv. Theor. Math. Phys. 6 (2002), no. 1, 107–139.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    M.I. Weinstein, “Lyapunov stability of ground states of nonlinear dispersive evolution equations”, Comm. Pure Appl. Math. 39, 51–68 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    M.I. Weinstein, “Localized States and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii Equation”, Frontiers of Applied Dynamical Systems: Reviews and Tutorials, vol. 3 (2015), 41–79.CrossRefGoogle Scholar
  57. 57.
    G. Zhou, “Perturbation expansion and Nth order Fermi golden rule of the nonlinear Schrödinger equations”, J. Math. Phys. 48 (2007), no. 5, 053509–053532.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbana-ChampaignUSA

Personalised recommendations