Advertisement

Sustainability of Cooperation in Dynamic Games Played over Event Trees

  • Georges ZaccourEmail author
Chapter
Part of the Fields Institute Communications book series (FIC, volume 79)

Abstract

In this tutorial, we recall the main ingredients of the theory of dynamic games played over event trees and show step-by-step how to build a sustainable cooperative solution.

Keywords

Dynamic games Cooperation Sustainability 

Notes

Acknowledgements

This paper draws from my previous work on the subject, in particular Reddy, Shevkoplyas and Zaccour [52] and Parilina and Zaccour [38]. I would like to thank my co-authors in these papers, as well as Alain Haurie and Leon Petrosjan for many stimulating discussions over the last two decades or so on dynamic games played over event trees and time consistency in dynamic games. Research supported by SSHRC, Canada.

References

  1. 1.
    Aumann, R.J.: The core of a cooperative game without side payments. Transactions of the American Mathematical Society 98, 539–552 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avrachenkov, K., Cottatellucci, L., Maggi, L.: Cooperative Markov decision processes: Time consistency, greedy players satisfaction, and cooperation maintenance. International Journal of Game Theory 42, 239–262 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Breton, M., Sokri A., Zaccour, G.: Incentive equilibrium in an overlapping-generations environmental game. European Journal of Operational Research 185, 687–699 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buratto, A., Zaccour, G.: Coordination of advertising strategies in a fashion licensing contract. Journal of Optimization Theory and Applications 142, 31–53 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chander, P., Tulkens, H.: The core of an economy with multilateral environmental externalities. International Journal of Game Theory 23, 379–401 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chiarella, C., Kemp, M.C., Long, N.V., Okuguchi, K.: On the economics of international fisheries. International Economic Review 25, 85–92 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dockner, E., Jørgensen, S., Van Long, N., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    De Frutos, J., Martín-Herrán, G.: Does flexibility facilitate sustainability of cooperation over time? A case study from environmental economics. Journal of Optimization Theory and Applications 165, 657–677 (2015)CrossRefzbMATHGoogle Scholar
  9. 9.
    De Giovanni, P., Reddy, P.V., Zaccour, G.: Incentive strategies for an optimal recovery program in a closed-loop supply chain. European Journal of Operational Research 249, 605–617 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dutta, P.K.: A folk theorem for stochastic games. Journal of Economic Theory 66, 1–32 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ehtamo, H., Hämäläinen, R.P.: On affine incentives for dynamic decision problems. In: Basar, T. (ed.) Dynamic Games and Applications in Economics, pp. 47–63. Springer, Berlin (1986)CrossRefGoogle Scholar
  12. 12.
    Ehtamo, H., Hämäläinen, R.P.: Incentive strategies and equilibria for dynamic games with delayed information. Journal of Optimization Theory and Applications 63, 355–370 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ehtamo, H., Hämäläinen, R.P.: A cooperative incentive equilibrium for a resource management problem. Journal of Economic Dynamics and Control 17, 659–678 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Filar, J., Petrosjan, L.: Dynamic cooperative games. International Game Theory Review 2(1), 47–65 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Genc, T., Reynolds, S.S., Sen, S.: Dynamic oligopolistic games under uncertainty: A stochastic programming approach. Journal of Economic Dynamics & Control 31, 55–80 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Genc, T., Sen, S.: An analysis of capacity and price trajectories for the Ontario electricity market using dynamic Nash equilibrium under uncertainty. Energy Economics 30, 173–191 (2008)CrossRefGoogle Scholar
  17. 17.
    Germain, M. Toint, P., Tulkens H., de Zeeuw A.: Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. Journal of Economic Dynamics & Control 28(1), 79–99 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gillies, D.B.: Some Theorems on N-Person Games, Ph.D. Thesis, Princeton University (1953)Google Scholar
  19. 19.
    Haurie, A.: A note on nonzero-sum differential games with bargaining solution. Journal of Optimization Theory and Applications 18, 31–39 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Haurie, A., Pohjola, M.: Efficient equilibria in a differential game of capitalism. Journal of Economic Dynamics and Control 11, 65–78 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Haurie, A., Krawczyk, J.B., Roche, M.: Monitoring cooperative equilibria in a stochastic differential game. Journal of Optimization Theory and Applications 81, 79–95 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Haurie, A., Krawczyk, J.B., Zaccour, G.: Games and Dynamic Games. Scientific World, Singapore (2012)CrossRefzbMATHGoogle Scholar
  23. 23.
    Haurie, A., Zaccour. G., Smeers, Y.: Stochastic equilibrium programming for dynamic oligopolistic markets. Journal of Optimization Theory and Applications 66(2), 243–253 (1990)Google Scholar
  24. 24.
    Haurie, A., Zaccour, G.: S-adapted equilibria in games played over event trees: An overview. Annals of the International Society of Dynamic Games 7, 367–400 (2005)zbMATHGoogle Scholar
  25. 25.
    Jørgensen, S., Martín-Herrán, G., Zaccour, G.: Agreeability and time-consistency in linear-state differential games. Journal of Optimization Theory and Applications 119, 49–63 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jørgensen, S., Martín-Herrán, G., Zaccour, G.: Sustainability of cooperation overtime in linear-quadratic differential game. International Game Theory Review 7, 395–406 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jørgensen, S., Zaccour, G.: Time consistent side payments in a dynamic game of downstream pollution. Journal of Economic Dynamics and Control 25, 1973–1987 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kaitala, V., Pohjola, M.: Economic development and agreeable redistribution in capitalism: Efficient game equilibria in a two-class neoclassical growth model. International Economic Review 31, 421–437 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kaitala, V., Pohjola, M.: Sustainable international agreements on greenhouse warming: A game theory study. Annals of the International Society of Dynamic Games 2, 67–87 (1995)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kanani Kuchesfehani, K., Zaccour, G.: S-adapted equilibria in games played over event trees with coupled constraints. Journal of Optimization Theory and Applications 166, 644–658 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lehrer, E., Scarsini, M.: On the core of dynamic cooperative games. Dynamic Games and Applications 3, 359–373 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Martín-Herrán, G., Rincón-Zapatero, J.P.: Efficient Markov perfect Nash equilibria: Theory and application to dynamic fishery games. Journal of Economics Dynamics and Control 29, 1073–1096 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Martín-Herrán, G., Taboubi, S.: Shelf-space allocation and advertising decisions in the marketing channel: A differential game approach. International Game Theory Review 7(03), 313–330 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Martín-Herrán, G., Zaccour, G.: Credibility of incentive equilibrium strategies in linear-state differential games. Journal of Optimization Theory and Applications 126, 1–23. (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Martín-Herrán, G., Zaccour, G.: Credible linear-incentive equilibrium strategies in linear-quadratic differential games. Annals of the International Society of Dynamic Games 10, 261–292 (2009)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ordeshook, P.C.: Game theory and Political Theory. Cambridge University Press, Cambridge, UK (1986)CrossRefGoogle Scholar
  37. 37.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge, MA (1994)zbMATHGoogle Scholar
  38. 38.
    Parilina, E., Zaccour, G.: Node-consistent core for games played over event trees. Automatica 55, 304–311 (2015a)Google Scholar
  39. 39.
    Parilina, E., Zaccour, G.: Approximated cooperative equilibria for games played over event trees. Operations Research Letters 43, 507–513 (2015b)Google Scholar
  40. 40.
    Petrosjan, L.: Stable solutions of differential games with many participants. Viestnik of Leningrad University 19, 46–52 (1977)zbMATHGoogle Scholar
  41. 41.
    Petrosjan, L.: Differential Games of Pursuit. World Scientific, Singapore, 270–282 (1993)Google Scholar
  42. 42.
    Petrosjan, L., Baranova, E.M., Shevkoplyas, E.V.: Multistage cooperative games with random duration. Proceedings of the Steklov Institute of Mathematics (Supplementary issues), suppl. 2, S126–S141 (2004)Google Scholar
  43. 43.
    Petrosjan, L., Danilov, N.N.: Stability of solutions in nonzero sum differential games with transferable payoffs. Journal of Leningrad University N1, 52–59 (in Russian) (1979)Google Scholar
  44. 44.
    Petrosjan, L., Danilov, N.N.: Cooperative Differential Games and Their Applications. Tomsk University Press, Tomsk (1982)Google Scholar
  45. 45.
    Petrosjan, L., Danilov, N.N.: Classification of dynamically stable solutions in cooperative differential games. Isvestia of High School 7, 24–35 (in Russian) (1986)Google Scholar
  46. 46.
    Petrosjan, L., Zaccour, G.: Time-consistent Shapley value of pollution cost reduction. Journal of Economic Dynamics and Control 27, 381–398 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Petrosjan, L., Zenkevich, N.A.: Game Theory. World Scientific, Singapore (1996)CrossRefGoogle Scholar
  48. 48.
    Pineau, P.-O., Murto, P.: An oligopolistic investment model of the Finnish electricity market. Annals of Operations Research 121, 123–148 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Pineau, P.-O., Rasata, H., Zaccour, G.: A Dynamic Oligopolistic Electricity Market Model with Interdependent Segments, Energy Journal 32(4), 183–217 (2011a)Google Scholar
  50. 50.
    Pineau, P.-O., Rasata, H., Zaccour, G.: Impact of some parameters on investments in oligopolistic electricity markets. European Journal of Operational Research 213(1), 180–195 (2011b)Google Scholar
  51. 51.
    Predtetchinski, A.: The strong sequential core for stationary cooperative games. Games and Economic Behavior 61, 50–66 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Reddy, P. V., Shevkoplyas E., Zaccour, G.: Time-consistent Shapley value for games played over event trees. Automatica 49(6), 1521–1527 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Tolwinski, B., Haurie A., Leitmann, G.: Cooperative equilibria in differential games. Journal of Mathematical Analysis and Applications 119, 182–202 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ (1944)zbMATHGoogle Scholar
  56. 56.
    Xu, N., Veinott Jr., A.: Sequential stochastic core of a cooperative stochastic programming game. Operations Research Letters 41, 430–435 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Yeung, D.W.K., Petrosjan, L.: Proportional time-consistent solutions in differential games. Proceedings of International Conference on Logic, Game Theory and Applications, Saint Petersburg, 254–256 (2001)Google Scholar
  58. 58.
    Yeung, D.W.K., Petrosjan, L.: Consistent solution of a cooperative stochastic differential game with nontransferable payoffs. Journal of Optimization Theory and Applications 124, 701–724 (2005a)Google Scholar
  59. 59.
    Yeung, D.W.K., Petrosjan, L.: Cooperative Stochastic Differential Games. Springer, New York, NY (2005b)Google Scholar
  60. 60.
    Yeung, D.W.K., Petrosjan, L.: Dynamically stable corporate joint ventures. Automatica 42, 365–370 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Yeung, D.W.K., Petrosjan, L., Yeung, P.M.: Subgame consistent solutions for a class of cooperative stochastic differential games with nontransferable payoffs. Annals of the International Society of Dynamic Games 9, 153–170 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Zaccour, G.: Théorie des jeux et marchés énergétiques: marché européen de gaz naturel et échanges d’électricité, Ph.D. Thesis, HEC Montréal (1987)Google Scholar
  63. 63.
    Zaccour, G.: Time consistency in cooperative differential games: A tutorial. INFOR 46(1), 81–92 (2008)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Chair in Game Theory and ManagementGERAD, HEC MontréalMontréalCanada

Personalised recommendations