Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 79))

Abstract

In this tutorial, we recall the main ingredients of the theory of dynamic games played over event trees and show step-by-step how to build a sustainable cooperative solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To define a game in normal form, we need three elements: (a) a finite set of players M = {1, , m}, (b) a strategy set S i of player iM, and (c) a payoff function \(\pi _{i}:\prod \limits _{i\in M}S_{i} \rightarrow \mathbb{R}\).

  2. 2.

    For a detailed treatment in the context of this class of games, see Haurie et al. [22].

  3. 3.

    We can easily extend our framework to the case where the players maximize a weighted sum of payoffs.

  4. 4.

    The implicit assumption here is that players’ utilities (gains) are comparable and transferable; otherwise side payments do not make sense.

  5. 5.

    The following example illustrates this statement. Consider a three-player cooperative game with characteristic function values given by

    $$\displaystyle\begin{array}{rcl} v(\left \{1\right \})& =& v(\left \{2\right \}) = v(\left \{3\right \}) = 0, {}\\ v(\left \{1, 2\right \})& =& v(\left \{1, 3\right \}) = v(\left \{2, 3\right \}) = a,\quad v(\left \{1, 2, 3\right \}) = 1 {}\\ \end{array}$$

    where 0 < a ≤ 1. It is easy to verify that three cases can occur: (i) If 0 < a < 2∕3, then the core contains all imputations satisfying \(y_{j} \geq 0,\sum \limits _{j\in G}y_{j} \geq a\) and \(\sum \limits _{j\in M}y_{j} = 1.\) (ii) If a = 2∕3, then the core is a singleton, that is, the only imputation belonging to the core is \(\left (1/3, 1/3, 1/3\right )\). (iii) If a > 2∕3, then the core is empty.

References

  1. Aumann, R.J.: The core of a cooperative game without side payments. Transactions of the American Mathematical Society 98, 539–552 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avrachenkov, K., Cottatellucci, L., Maggi, L.: Cooperative Markov decision processes: Time consistency, greedy players satisfaction, and cooperation maintenance. International Journal of Game Theory 42, 239–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breton, M., Sokri A., Zaccour, G.: Incentive equilibrium in an overlapping-generations environmental game. European Journal of Operational Research 185, 687–699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buratto, A., Zaccour, G.: Coordination of advertising strategies in a fashion licensing contract. Journal of Optimization Theory and Applications 142, 31–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chander, P., Tulkens, H.: The core of an economy with multilateral environmental externalities. International Journal of Game Theory 23, 379–401 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chiarella, C., Kemp, M.C., Long, N.V., Okuguchi, K.: On the economics of international fisheries. International Economic Review 25, 85–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dockner, E., Jørgensen, S., Van Long, N., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  8. De Frutos, J., Martín-Herrán, G.: Does flexibility facilitate sustainability of cooperation over time? A case study from environmental economics. Journal of Optimization Theory and Applications 165, 657–677 (2015)

    Article  MATH  Google Scholar 

  9. De Giovanni, P., Reddy, P.V., Zaccour, G.: Incentive strategies for an optimal recovery program in a closed-loop supply chain. European Journal of Operational Research 249, 605–617 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dutta, P.K.: A folk theorem for stochastic games. Journal of Economic Theory 66, 1–32 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehtamo, H., Hämäläinen, R.P.: On affine incentives for dynamic decision problems. In: Basar, T. (ed.) Dynamic Games and Applications in Economics, pp. 47–63. Springer, Berlin (1986)

    Chapter  Google Scholar 

  12. Ehtamo, H., Hämäläinen, R.P.: Incentive strategies and equilibria for dynamic games with delayed information. Journal of Optimization Theory and Applications 63, 355–370 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehtamo, H., Hämäläinen, R.P.: A cooperative incentive equilibrium for a resource management problem. Journal of Economic Dynamics and Control 17, 659–678 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Filar, J., Petrosjan, L.: Dynamic cooperative games. International Game Theory Review 2(1), 47–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Genc, T., Reynolds, S.S., Sen, S.: Dynamic oligopolistic games under uncertainty: A stochastic programming approach. Journal of Economic Dynamics & Control 31, 55–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Genc, T., Sen, S.: An analysis of capacity and price trajectories for the Ontario electricity market using dynamic Nash equilibrium under uncertainty. Energy Economics 30, 173–191 (2008)

    Article  Google Scholar 

  17. Germain, M. Toint, P., Tulkens H., de Zeeuw A.: Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. Journal of Economic Dynamics & Control 28(1), 79–99 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gillies, D.B.: Some Theorems on N-Person Games, Ph.D. Thesis, Princeton University (1953)

    Google Scholar 

  19. Haurie, A.: A note on nonzero-sum differential games with bargaining solution. Journal of Optimization Theory and Applications 18, 31–39 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haurie, A., Pohjola, M.: Efficient equilibria in a differential game of capitalism. Journal of Economic Dynamics and Control 11, 65–78 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haurie, A., Krawczyk, J.B., Roche, M.: Monitoring cooperative equilibria in a stochastic differential game. Journal of Optimization Theory and Applications 81, 79–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haurie, A., Krawczyk, J.B., Zaccour, G.: Games and Dynamic Games. Scientific World, Singapore (2012)

    Book  MATH  Google Scholar 

  23. Haurie, A., Zaccour. G., Smeers, Y.: Stochastic equilibrium programming for dynamic oligopolistic markets. Journal of Optimization Theory and Applications 66(2), 243–253 (1990)

    Google Scholar 

  24. Haurie, A., Zaccour, G.: S-adapted equilibria in games played over event trees: An overview. Annals of the International Society of Dynamic Games 7, 367–400 (2005)

    MATH  Google Scholar 

  25. Jørgensen, S., Martín-Herrán, G., Zaccour, G.: Agreeability and time-consistency in linear-state differential games. Journal of Optimization Theory and Applications 119, 49–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jørgensen, S., Martín-Herrán, G., Zaccour, G.: Sustainability of cooperation overtime in linear-quadratic differential game. International Game Theory Review 7, 395–406 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jørgensen, S., Zaccour, G.: Time consistent side payments in a dynamic game of downstream pollution. Journal of Economic Dynamics and Control 25, 1973–1987 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaitala, V., Pohjola, M.: Economic development and agreeable redistribution in capitalism: Efficient game equilibria in a two-class neoclassical growth model. International Economic Review 31, 421–437 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaitala, V., Pohjola, M.: Sustainable international agreements on greenhouse warming: A game theory study. Annals of the International Society of Dynamic Games 2, 67–87 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Kanani Kuchesfehani, K., Zaccour, G.: S-adapted equilibria in games played over event trees with coupled constraints. Journal of Optimization Theory and Applications 166, 644–658 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lehrer, E., Scarsini, M.: On the core of dynamic cooperative games. Dynamic Games and Applications 3, 359–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Martín-Herrán, G., Rincón-Zapatero, J.P.: Efficient Markov perfect Nash equilibria: Theory and application to dynamic fishery games. Journal of Economics Dynamics and Control 29, 1073–1096 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Martín-Herrán, G., Taboubi, S.: Shelf-space allocation and advertising decisions in the marketing channel: A differential game approach. International Game Theory Review 7(03), 313–330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martín-Herrán, G., Zaccour, G.: Credibility of incentive equilibrium strategies in linear-state differential games. Journal of Optimization Theory and Applications 126, 1–23. (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Martín-Herrán, G., Zaccour, G.: Credible linear-incentive equilibrium strategies in linear-quadratic differential games. Annals of the International Society of Dynamic Games 10, 261–292 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Ordeshook, P.C.: Game theory and Political Theory. Cambridge University Press, Cambridge, UK (1986)

    Book  Google Scholar 

  37. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge, MA (1994)

    MATH  Google Scholar 

  38. Parilina, E., Zaccour, G.: Node-consistent core for games played over event trees. Automatica 55, 304–311 (2015a)

    Google Scholar 

  39. Parilina, E., Zaccour, G.: Approximated cooperative equilibria for games played over event trees. Operations Research Letters 43, 507–513 (2015b)

    Google Scholar 

  40. Petrosjan, L.: Stable solutions of differential games with many participants. Viestnik of Leningrad University 19, 46–52 (1977)

    MATH  Google Scholar 

  41. Petrosjan, L.: Differential Games of Pursuit. World Scientific, Singapore, 270–282 (1993)

    Google Scholar 

  42. Petrosjan, L., Baranova, E.M., Shevkoplyas, E.V.: Multistage cooperative games with random duration. Proceedings of the Steklov Institute of Mathematics (Supplementary issues), suppl. 2, S126–S141 (2004)

    Google Scholar 

  43. Petrosjan, L., Danilov, N.N.: Stability of solutions in nonzero sum differential games with transferable payoffs. Journal of Leningrad University N1, 52–59 (in Russian) (1979)

    Google Scholar 

  44. Petrosjan, L., Danilov, N.N.: Cooperative Differential Games and Their Applications. Tomsk University Press, Tomsk (1982)

    Google Scholar 

  45. Petrosjan, L., Danilov, N.N.: Classification of dynamically stable solutions in cooperative differential games. Isvestia of High School 7, 24–35 (in Russian) (1986)

    Google Scholar 

  46. Petrosjan, L., Zaccour, G.: Time-consistent Shapley value of pollution cost reduction. Journal of Economic Dynamics and Control 27, 381–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Petrosjan, L., Zenkevich, N.A.: Game Theory. World Scientific, Singapore (1996)

    Book  Google Scholar 

  48. Pineau, P.-O., Murto, P.: An oligopolistic investment model of the Finnish electricity market. Annals of Operations Research 121, 123–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pineau, P.-O., Rasata, H., Zaccour, G.: A Dynamic Oligopolistic Electricity Market Model with Interdependent Segments, Energy Journal 32(4), 183–217 (2011a)

    Google Scholar 

  50. Pineau, P.-O., Rasata, H., Zaccour, G.: Impact of some parameters on investments in oligopolistic electricity markets. European Journal of Operational Research 213(1), 180–195 (2011b)

    Google Scholar 

  51. Predtetchinski, A.: The strong sequential core for stationary cooperative games. Games and Economic Behavior 61, 50–66 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Reddy, P. V., Shevkoplyas E., Zaccour, G.: Time-consistent Shapley value for games played over event trees. Automatica 49(6), 1521–1527 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tolwinski, B., Haurie A., Leitmann, G.: Cooperative equilibria in differential games. Journal of Mathematical Analysis and Applications 119, 182–202 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  55. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ (1944)

    MATH  Google Scholar 

  56. Xu, N., Veinott Jr., A.: Sequential stochastic core of a cooperative stochastic programming game. Operations Research Letters 41, 430–435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yeung, D.W.K., Petrosjan, L.: Proportional time-consistent solutions in differential games. Proceedings of International Conference on Logic, Game Theory and Applications, Saint Petersburg, 254–256 (2001)

    Google Scholar 

  58. Yeung, D.W.K., Petrosjan, L.: Consistent solution of a cooperative stochastic differential game with nontransferable payoffs. Journal of Optimization Theory and Applications 124, 701–724 (2005a)

    Google Scholar 

  59. Yeung, D.W.K., Petrosjan, L.: Cooperative Stochastic Differential Games. Springer, New York, NY (2005b)

    Google Scholar 

  60. Yeung, D.W.K., Petrosjan, L.: Dynamically stable corporate joint ventures. Automatica 42, 365–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yeung, D.W.K., Petrosjan, L., Yeung, P.M.: Subgame consistent solutions for a class of cooperative stochastic differential games with nontransferable payoffs. Annals of the International Society of Dynamic Games 9, 153–170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zaccour, G.: Théorie des jeux et marchés énergétiques: marché européen de gaz naturel et échanges d’électricité, Ph.D. Thesis, HEC Montréal (1987)

    Google Scholar 

  63. Zaccour, G.: Time consistency in cooperative differential games: A tutorial. INFOR 46(1), 81–92 (2008)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper draws from my previous work on the subject, in particular Reddy, Shevkoplyas and Zaccour [52] and Parilina and Zaccour [38]. I would like to thank my co-authors in these papers, as well as Alain Haurie and Leon Petrosjan for many stimulating discussions over the last two decades or so on dynamic games played over event trees and time consistency in dynamic games. Research supported by SSHRC, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Zaccour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Zaccour, G. (2017). Sustainability of Cooperation in Dynamic Games Played over Event Trees. In: Melnik, R., Makarov, R., Belair, J. (eds) Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science. Fields Institute Communications, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6969-2_14

Download citation

Publish with us

Policies and ethics