Skip to main content

Role of Nanotechnology in Biological Therapies

  • Chapter
  • First Online:
The Handbook of Nanomedicine
  • 2096 Accesses

Abstract

Biological therapies are playing an increasing role in modern medicine. This term includes recombinant human proteins, monoclonal antibodies (MAbs), vaccines, cell therapy, gene therapy, antisense and RNA interference (RNAi). Some technologies for cell and gene therapy are in themselves sophisticated methods of therapeutic delivery whereas others require special methods of delivery. Role of nanobiotechnology in delivery of biologicals will be discussed in this chapter. MAbs are considered along with drug delivery for cancer in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonoiu AC, Mahajan SD, Ding H, et al. Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci U S A. 2009;106:5546–50.

    Article  Google Scholar 

  • Bryson JM, Fichter KM, Chu WJ, et al. Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery. Proc Natl Acad Sci U S A. 2009;106:16913–8.

    Article  Google Scholar 

  • Chahal JS, Khan OF, Cooper CL, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A. 2016;113:E4133–42.

    Article  Google Scholar 

  • Delyagina E, Li W, Ma N, Steinhoff G. Magnetic targeting strategies in gene delivery. Nanomedicine (Lond). 2011;6(9):1593–604.

    Article  Google Scholar 

  • Glover DJ, Ng SM, Mechler A, et al. Multifunctional protein nanocarriers for targeted nuclear gene delivery in nondividing cells. FASEB J. 2009;23:2996–3006.

    Article  Google Scholar 

  • Graf A, Jack KS, Whittaker AK, et al. Protein delivery using nanoparticles based on microemulsions with different structure-types. Eur J Pharm Sci. 2008;33:434–44.

    Article  Google Scholar 

  • Heidel JD, Yu Z, Liu J, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A. 2007a;104:5715–21.

    Article  Google Scholar 

  • Heidel JD, Liu JY, Yen Y, et al. Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin Cancer Res. 2007b;13:2207–15.

    Article  Google Scholar 

  • Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev. 2009;61:710–20.

    Article  Google Scholar 

  • Jain KK. Cell therapy: technologies, markets & companies. Basel: Jain PharmaBiotech Publications; 2017a.

    Google Scholar 

  • Jain KK. Gene Therapy: technologies, markets and companies. Basel: Jain PharmaBiotech Publications; 2017b.

    Google Scholar 

  • Jayakumar MK, Idris NM, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci U S A. 2012;109:8483–8.

    Article  Google Scholar 

  • Jiang X, Qu W, Pan D. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv Mater. 2013;25:227–32.

    Article  Google Scholar 

  • Johnson PE, Muttil P, MacKenzie D, et al. Spray-dried multiscale nano-biocomposites containing living cells. ACS Nano. 2015;9:6961–77.

    Article  Google Scholar 

  • Kasala D, Yoon AR, Hong J, et al. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond). 2016;11:1689–713.

    Article  Google Scholar 

  • Kim SH, Jeong JH, Lee SH, et al. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release. 2008;129:107–16.

    Article  Google Scholar 

  • Kim JS, Kang SJ, Jeong HY, et al. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy. Int J Oncol. 2016;49:1130–8.

    Google Scholar 

  • Kommareddy S, Amiji M. Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther. 2007;14:488–98.

    Article  Google Scholar 

  • Moon JJ, Suh H, Li AV, et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc Natl Acad Sci U S A. 2012;109:1080–5.

    Article  Google Scholar 

  • Nguyen DN, Mahon KP, Chikh G, et al. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc Natl Acad Sci U S A. 2012;109:E797–803.

    Article  Google Scholar 

  • Nuhn L, Vanparijs N, De Beuckelaer A, et al. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci U S A. 2016;113:8098–103.

    Article  Google Scholar 

  • O’Brien JA, Lummis SC. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol. 2011;11:66.

    Article  Google Scholar 

  • Paleos CM, Tziveleka LA, Sideratou Z, Tsiourvas D. Gene delivery using functional dendritic polymers. Expert Opin Drug Deliv. 2009;6:27–38.

    Article  Google Scholar 

  • Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–51.

    Article  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006;312:1027–30.

    Article  Google Scholar 

  • Seth A, Oh DB, Lim YT. Nanomaterials for enhanced immunity as an innovative paradigm in nanomedicine. Nanomedicine (Lond). 2015;10:959–75.

    Article  Google Scholar 

  • Sirsi SR, Schray RC, Wheatley MA, Lutz GJ. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides. J Nanobiotechnology. 2009;7:1.

    Article  Google Scholar 

  • Swami A, Kurupati RK, Pathak A, et al. A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles. Biochem Biophys Res Commun. 2007;362:835.

    Article  Google Scholar 

  • Weinstein S, Toker IA, Emmanuel R, et al. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci U S A. 2016;113:E16–22.

    Article  Google Scholar 

  • Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv. 2011;8:521–36.

    Article  Google Scholar 

  • Zhang P, Chen Y, Zeng Y, et al. Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci U S A. 2015;112:E6129–38.

    Article  Google Scholar 

  • Zhao Y, Vivero-Escoto JL, Slowing II, et al. Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opin Drug Deliv. 2010;7:1013–29.

    Article  Google Scholar 

  • Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A. 2012;109:11975–80.

    Article  Google Scholar 

  • Zhou HF, Yan H, Pan H, et al. Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis. J Clin Invest. 2014;124:4363–74.

    Article  Google Scholar 

  • Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci U S A. 2014;111:11449–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Jain, K.K. (2017). Role of Nanotechnology in Biological Therapies. In: The Handbook of Nanomedicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6966-1_6

Download citation

Publish with us

Policies and ethics