Skip to main content

Introduction

  • Chapter
  • First Online:
The Handbook of Nanomedicine
  • 2145 Accesses

Abstract

Nanomedicine is defined as the application of nanobiotechnology to medicine. It is a discipline at the interface of medicine and nanobiotechnology but is not a subspecialty of either of these. Its broad scope covers the use of nanoparticles and nanodevices in healthcare for diagnosis as well as therapeutics. Safety, ethical and regulatory issues are also included. Figure 1.1 shows the relationship of various biotechnologies to nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batten TF, Hopkins CR. Use of protein A-coated colloidal gold particles for immunoelectronmicroscopic localization of ACTH on ultrathin sections. Histochemistry. 1979;60:317–20.

    Article  Google Scholar 

  • Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–6.

    Article  Google Scholar 

  • Curl RF, Kroto H, Smalley RE. Nobel lectures in chemistry. Rev Mod Phys. 1997;69:691–730.

    Article  Google Scholar 

  • Douglas SJ, Davis SS, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst. 1987;3:233–61.

    Google Scholar 

  • Drexler KE. Engines of creation, the coming era of nanotechnology. New York: Anchor; 1987.

    Google Scholar 

  • Drexler KE. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci U S A. 1981;78:5275–8.

    Article  Google Scholar 

  • Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunneling microscope. Nature. 1990;344:524–6.

    Article  Google Scholar 

  • European Commission. Recommendation of 18 October 2011 on the definition of nanomaterial. Official Journal of the European Union 2011/696/EU. 2011.; http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF

  • Feynman R. There’s plenty of room at the bottom: an invitation to enter a new filed of physics. Reprinted in: Crandall BC, Lewis J, editors. Nanotechnology: research and perspectives. Cambridge, MA: The MIT Press; 1992. p. 347–63.

    Google Scholar 

  • Freitas Jr RA. Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol. 1998;26:411–30.

    Article  Google Scholar 

  • Hush NS. An overview of the first half-century of molecular electronics. Ann N Y Acad Sci. 2003;1006:1–20.

    Article  Google Scholar 

  • Iijima S, Ajayan PM, Ichihashi T. Growth model for carbon nanotubes. Phys Rev Lett. 1992;69:3100–3.

    Article  Google Scholar 

  • Jain KK. Textbook of personalized medicine. 2nd ed. New York: Springer; 2015.

    Google Scholar 

  • Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet. 1994;19:253–6.

    Article  Google Scholar 

  • Lehn JM. Supramolecular chemistry – scope and perspectives: molecules, supermolecules, and molecular devices. Ang Chem Int Ed Engl. 1988;27:89–112.

    Article  Google Scholar 

  • Li K, Stockman MI, Bergman DJ. Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett. 2003;91:227402.

    Article  Google Scholar 

  • Ozin GA, Arsenault AC, Cademartiri L. Nanochemistry: a chemical approach to nanomaterials. 2nd ed. Cambridge, UK: Royal Society of Chemistry; 2009.

    Google Scholar 

  • Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol. 2003;14:337–46.

    Article  Google Scholar 

  • Smalley RE. Supersonic cluster beams: an alternative approach to surface science. In: Bartlett RJ, editor. Comparison of Ab initio quantum chemistry with experiments for small molecules. Boston: D. Riedel; 1985.

    Google Scholar 

  • Suh WH, et al. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol. 2009;87:133–70.

    Article  Google Scholar 

  • Suh JY, Kim CH, Zhou W, et al. Plasmonic bowtie nanolaser arrays. Nano Lett. 2012;12:5769–74.

    Article  Google Scholar 

  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

    Article  Google Scholar 

  • Truong-Le VL, August JT, Leong KW. Controlled gene delivery by DNA-gelatin nanospheres. Hum Gene Ther. 1998;9:1709–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Jain, K.K. (2017). Introduction. In: The Handbook of Nanomedicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6966-1_1

Download citation

Publish with us

Policies and ethics