Skip to main content

Brown Measure

  • Chapter
  • First Online:
Free Probability and Random Matrices

Part of the book series: Fields Institute Monographs ((FIM,volume 35))

  • 3155 Accesses

Abstract

The Brown measure is a generalization of the eigenvalue distribution for a general (not necessarily normal) operator in a finite von Neumann algebra (i.e. a von Neumann algebra which possesses a trace). It was introduced by Larry Brown in [46], but fell into obscurity soon after. It was revived by Haagerup and Larsen [85] and played an important role in Haagerup’s investigations around the invariant subspace problem [87].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Aagaard, U. Haagerup, Moment formulas for the quasi-nilpotent DT-operator. Int. J. Math. 15(6), 581–628 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. D.H. Armitage, S.J. Gardiner, Classical Potential Theory (Springer, London, 2001)

    Book  MATH  Google Scholar 

  3. S.T. Belinschi, P. Śniady, R. Speicher, Eigenvalues of non-hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method. arXiv:1506.02017 (2015)

    Google Scholar 

  4. P. Biane, F. Lehner, Computation of some examples of Brown’s spectral measure in free probability. Colloq. Math. 90(2), 181–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bordenave, D. Chafaï, Around the circular law. Probab. Surv. 9, 1–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. L.G. Brown, Lidskiĭ’s theorem in the type II case, in Geometric Methods in Operator Algebras (Kyoto, 1983). Pitman Research Notes in Mathematics Series, vol. 123 (Longman Science Technology, Harlow, 1986), pp. 1–35

    Google Scholar 

  7. J. Feinberg, A. Zee, Non-Hermitian random matrix theory: method of Hermitian reduction. Nuclear Phys. B 504(3), 579–608 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Fuglede, R.V. Kadison, Determinant theory in finite factors. Ann. Math. (2) 55, 520–530 (1952)

    Google Scholar 

  9. V.L. Girko, The circular law. Teor. Veroyatnost. i Primenen. 29(4), 669–679 (1984)

    MathSciNet  MATH  Google Scholar 

  10. A. Guionnet, M. Krishnapur, O. Zeitouni, The single ring theorem. Ann. Math. (2) 174(2), 1189–1217 (2011)

    Google Scholar 

  11. U. Haagerup, F. Larsen, Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176(2), 331–367 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. U. Haagerup, H. Schultz, Brown measures of unbounded operators affiliated with a finite von Neumann algebra. Math. Scand. 100(2), 209–263 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Haagerup, H. Schultz, Invariant subspaces for operators in a general II1-factor. Publ. Math. Inst. Hautes Études Sci. 109(1), 19–111 (2009)

    Article  MATH  Google Scholar 

  14. W.K. Hayman, P.B. Kennedy, Subharmonic Functions. Vol. I. London Mathematical Society Monographs, vol. 9 (Academic, London/New York, 1976)

    Google Scholar 

  15. J.W. Helton, T. Mai, R. Speicher, Applications of realizations (aka linearizations) to free probability. arXiv preprint arXiv:1511.05330, 2015

    Google Scholar 

  16. R.A. Janik, M.A. Nowak, G. Papp, I. Zahed, Non-Hermitian random matrix models. Nuclear Phys. B 501(3), 603–642 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Larsen, Brown measures and R-diagonal elements in finite von Neumann algebras. Ph.D. thesis, University of Southern Denmark, 1999

    Google Scholar 

  18. A. Nica, R. Speicher, R-diagonal pairs—a common approach to Haar unitaries and circular elements, in Free Probability Theory (Waterloo, ON, 1995). Fields Institute Communications, vol. 12 (American Mathematical Society, Providence, RI, 1997), pp. 149–188

    Google Scholar 

  19. A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335 (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  20. P. Śniady, R. Speicher, Continuous family of invariant subspaces for R–diagonal operators. Invent. Math. 146(2), 329–363 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Tao, Topics in Random Matrix Theory, vol. 132 (American Mathematical Society Providence, RI, 2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Mingo, J.A., Speicher, R. (2017). Brown Measure. In: Free Probability and Random Matrices. Fields Institute Monographs, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6942-5_11

Download citation

Publish with us

Policies and ethics