Skip to main content

Pseudoparabolic and Fractional Equations of Option Pricing

  • Chapter
  • First Online:
Book cover Pricing Derivatives Under Lévy Models

Part of the book series: Pseudo-Differential Operators ((PDO,volume 12))

  • 1111 Accesses

Abstract

We propose a new, unified approach to solving the jump–diffusion partial integrodifferential equations (PIDEs) that often appear in mathematical finance. Our method consists of the following steps. First, a second-order operator splitting on financial processes (diffusion and jumps) is applied to these PIDEs. To solve the diffusion equation, we use standard finite difference methods, which for multidimensional problems could also include splitting on various dimensions. For the jump part, we transform the jump integral into a pseudodifferential operator.

I became an atheist because, as a graduate student studying quantum physics, life seemed to be reducible to second-order differential equations. Mathematics, chemistry and physics had it all. And I didn’t see any need to go beyond that.

Francis Collins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, the CF of a jump–diffusion process in not known, unless we are talking about a Lévy process. What is known is the so-called symbol of the generator.

  2. 2.

    For the cosine transform, see [25, 26, 28] and references therein. For the modern FFT technique, see [16, 36, 38] and references therein.

  3. 3.

    For some models, it can be computed analytically, so in what follows, we do not take such models into account.

  4. 4.

    A second-order approximation could in principle be constructed as well, but that would result in a massive calculation for the coefficients. Therefore, this approach has not been further elaborated.

  5. 5.

    This equation arises naturally at some step of the splitting procedure if splitting is organized by separating diffusion from jumps.

  6. 6.

    In other words, the PIDE grid is a superset of the corresponding PDE grid.

  7. 7.

    We recall that a standard Brownian motion already has paths of infinite variation. Therefore, the Lévy process in Eq. (5.2) has infinite variation, since it contains a continuous martingale component. However, here we refer to the infinite variation that comes from the jumps.

  8. 8.

    See http://www.netlib.org/scalapack/scalapack_home.html.

  9. 9.

    We use 2N instead of N because in order to avoid undesirable wraparound errors, a common technique is to embed a discretization Toeplitz matrix in a circulant matrix. This requires doubling the initial vector of unknowns.

  10. 10.

    We keep the same notation for the put option value, which is C(x, τ), since this comparison means basically to compare two numerical methods rather than provide some deep economic meaning.

  11. 11.

    It actually uses 4N points, as it discussed earlier.

References

  1. A.M. Abu-Saman, A.M. Assaf, Stability and convergence of Crank–Nicholson method for fractional advection dispersion equation. Adv. Appl. Math. Anal. 2 (2), 117–125 (2007)

    MATH  Google Scholar 

  2. L. Andersen, J. Andreasen, Jump diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)

    Article  MATH  Google Scholar 

  3. L. Andersen, A. Lipton, Asymptotics for exponential Lévy processes and their volatility smile: Survey and new results. Int. J. Theor. Appl. Finance 16 (1), 1350001–1350098 (2013). Available at http://arxiv.org/abs/1206.6787

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Arisawa, Viscosity solutions approach to jump processes arising in mathematical finances, in Proceedings of 10th International Conference in Mathematical Finances, 2005. Also available at http://www.econ.kyoto-u.ac.jp/daiwa/workshops/2005paper/Arisawa.pdf

  5. R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960)

    MATH  Google Scholar 

  6. B. Böttcher, R.L. Schilling, J. Wang, Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Lecture Notes in Mathematics, 2009, Lévy Matters III (Springer, Berlin, 2014)

    Google Scholar 

  7. S. Boyarchenko, S. Levendorskii, Non-Gaussian Merton–Black–Scholes Theory (World Scientific, Singapore, 2002)

    Book  MATH  Google Scholar 

  8. S.I. Boyarchenko, S.Z. Levendorskii, Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Finance 3 (3), 549–552 (2000)

    Article  MATH  Google Scholar 

  9. M. Brennan, E. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims. J. Financ. Quant. Anal. 13 (3), 461–474 (1978)

    Article  Google Scholar 

  10. P. Carr, H. Geman, D. Madan, M. Yor, The fine structure of asset returns: An empirical investigation. J. Bus. 75 (2), 305–332 (2002)

    Article  Google Scholar 

  11. P. Carr, A. Mayo, On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13 (4), 353–372 (2007)

    Article  Google Scholar 

  12. P. Carr, L. Wu, Time-changed Lévy processes and option pricing. J. Financ. Econ. 71, 113–141 (2004)

    Article  Google Scholar 

  13. A. Cartea, D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps. Physica A 374, 749–763 (2007)

    Article  Google Scholar 

  14. R. Cont, P. Tankov, Financial Modelling with Jump Processes. Financial Mathematics Series (Chapman & Hall /CRCl, London, 2004)

    Google Scholar 

  15. R. Cont, E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. Technical Report 513, Rapport Interne CMAP, 2003

    Google Scholar 

  16. M. de Innocentis, S. Levendorskii, Pricing discrete barrier options and credit default swaps under Lévy processes. Quant. Finance 14 (8), 1337–1365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. O.L. de Lange, R.E. Raab, Operator Methods in Quantum Mechanics, Chapter 3 (Oxford Science Publications, Oxford, 1992)

    Google Scholar 

  18. Y. d’Halluin, P.A. Forsyth, G. Labahn, A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. D.J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. The Wiley Finance Series (Wiley, New York, 2006)

    Book  MATH  Google Scholar 

  22. E. Eberlein, Jump-type Lévy processes, in Handbook of Financial Time Series, ed. by T.G. Andersen, R.A. Davis, J.-P. Kreiß, T. Mikosch (Springer, New York, 2009), pp. 439–455

    Chapter  Google Scholar 

  23. D. Eberly, Derivative approximation by finite differences, March 2 2008. Available online at http://www.geometrictools.com/Documentation/FiniteDifferences.pdf

  24. M. Evans, N. Hastings, B. Peacock, Erlang distribution, in Statistical Distributions, chapter 12, pp. 71–73, 3rd edn. (Willey, New York, 2000)

    Google Scholar 

  25. F. Fang, C.W. Oosterlee, A novel pricing method for European options based on Fourier–Cosine series expansions. SIAM J. Sci. Comput. 31 (2), 826–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Fang, C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier–Cosine series expansions. Numer. Math. 114 (1), 27–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Feller, Zur Theorie der stochastischen Prozesse (Existenz- und Eindeutigkeitssätze). Math. Annalen 113 (1), 113–160 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  28. L.A. Grzelak, C.W. Oosterlee, On the Heston model with stochastic interest rates. SIAM J. Finan. Math. 2, 255–286 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. K.J. In’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7 (2), 303–320 (2010)

    MathSciNet  Google Scholar 

  30. A. Itkin, P. Carr, Jumps without tears: A new splitting technology for barrier options. Int. J. Numer. Anal. Model. 8 (4), 667–704 (2011)

    MathSciNet  MATH  Google Scholar 

  31. A. Itkin, P. Carr, Using pseudoparabolic and fractional equations for option pricing in jump diffusion models. Comput. Econ. 40 (1), 63–104 (2012)

    Article  MATH  Google Scholar 

  32. K. Jackson, S. Jaimungal, V. Surkov, Option valuation using Fourier space time stepping, March 2007. http://arxiv.org/abs/cs/0703068

  33. N. Jacob, Pseudo-Differential Operators and Markov Processes, volume 94 of Mathematical Research Notes (Academie-Verlag, Berlin, 1996)

    Google Scholar 

  34. N. Jacob, R.L. Schilling, Lévy processes: theory and applications, chapter Lévy-Type Processes and Pseudodifferential Operators, pp. 139–167 (Birkhauser, Boston, 2001)

    Google Scholar 

  35. I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197–1199 (1995)

    Article  Google Scholar 

  36. O. Kudryavtsev, S.Z. Levendorskii, Fast and accurate pricing of barrier options under Lévy processes. Finance Stochast. 13 (4), 531–562 (2009)

    Article  MATH  Google Scholar 

  37. S. Lee, X. Liu, H. Sun, Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19 (1), 87–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. S.Z. Levendorskii, Method of paired contours and pricing barrier options and CDS of long maturities. Int. J. Theor. Appl. Finance 17 (5), 1450033–1450092 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Lipton, A. Sepp, Credit value adjustment for credit default swaps via the structural default model. J. Credit Risk 5 (2), 123–146 (2009)

    Article  Google Scholar 

  40. D. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns. J. Bus. 63 (4), 511–524 (1990)

    Google Scholar 

  41. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Sousa, Finite difference approximations for a fractional advection diffusion problem. Technical Report 08-26, Departamento de Matematica, Universidade de Coimbra, 2008

    Google Scholar 

  44. A.K. Strauss, Numerical Analysis of Jump–Diffusion Models for Option Pricing, PhD thesis, Virginia Polytechnic Institute and State University, 2006

    Google Scholar 

  45. C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Tangman, A. Gopaul, M. Bhuruth, Exponential time integration and Chebyshev discretisation schemes for fast pricing of options. Appl. Numer. Math. 58 (9), 1309–1319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Tavella, C. Randall, Pricing Financial Instruments. The Finite-Difference Method. Wiley Series in Financial Engineering (Wiley, New York, 2000)

    Google Scholar 

  48. P. Wilmott, Derivatives (Willey, New York, 1998)

    Google Scholar 

  49. K. Zhang, S. Wang, A computational scheme for options under jump diffusion processes. Int. J. Numer. Anal. Model. 6 (1), 110–123 (2009)

    MathSciNet  MATH  Google Scholar 

  50. J. Zhou, P.S.Hagan, G. Schleiniger, Option pricing and implied volatility surfaces with the generalized tempered stable processes. FMA Annual Meeting, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Itkin, A. (2017). Pseudoparabolic and Fractional Equations of Option Pricing. In: Pricing Derivatives Under Lévy Models . Pseudo-Differential Operators, vol 12. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-6792-6_5

Download citation

Publish with us

Policies and ethics