Skip to main content

Modern Finite Difference Approach

  • Chapter
  • First Online:
Pricing Derivatives Under Lévy Models

Part of the book series: Pseudo-Differential Operators ((PDO,volume 12))

  • 1124 Accesses

Abstract

Modern finite difference schemes usually try to accomplish the following goals: (i) the scheme must be at least of second order of approximation in all independent variables; (ii) it should be unconditionally stable; (iii) it should preserve nonnegativity of the solution. Here we give the main definitions and facts of the modern theory of finite difference schemes using an operator approach to the solution of a parabolic partial differential equations or partial integrodifferentia equations and Padé approximations. We also introduce operator splitting techniques and high-order compact (HOC) schemes. In an appendix, some examples of HOC schemes are provided as applied to pricing American options.

The world is continuous, but the mind is discrete.

David Mumford (ICM 2002 plenary talk, Aug. 21, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For sampling barriers discretely, this could result in some problems; see the discussion in [45].

  2. 2.

    An explicit discretization of F k in our case is discussed below.

  3. 3.

    In other words, the order of convergence does not fluctuate significantly with time step change, and is always very close to 2.

References

  1. The American Heritage Science Dictionary (Houghton Mifflin Company, Boston, New York, 2011)

    Google Scholar 

  2. D.N. Arnold, Stability, consistency, and convergence of numerical discretizations, in Encyclopedia of Applied and Computational Mathematics, ed. by B. Engquist (Springer, New York, 2015)

    Google Scholar 

  3. L. Ballotta, E. Bonfiglioli, Multivariate asset models using Lévy processes and applications. Eur. J. Finance (2014). (DOI:10.1080/1351847X.2013.870917), April 2014

    Google Scholar 

  4. R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960)

    MATH  Google Scholar 

  5. A.J. Carpenter, A. Ruttan, R.S. Varga, Lecture Notes in Mathematics, vol. 1105, chapter Extended numerical computations on the 1/9 conjecture in rational approximation theory, pages 383–411 (Springer, New York, 1984)

    Google Scholar 

  6. M.M. Chawla, M.A. Al-Zanadi, M.G. Al-Aslab, Extended one-step time-integration schemes for convection–diffusion equations. Comput. Math. Appl. 39, 71–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. P.G. Ciarlet, Discrete maximum principle for finite difference operators. Aequationes Mathematicae 4, 338–352 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Detemple, American-Style Derivatives: Valuation and Computation. Financial Mathematics Series (Chapman & Hall/CRC, Boca Raton, London, New York, 2006)

    Google Scholar 

  9. D.J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. The Wiley Finance Series (Wiley, New York, 2006)

    Book  MATH  Google Scholar 

  10. E.G. Dyakonov, Difference schemes with a separable operator for general second order parabolic equations with variable coefficient. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki 4 (2), 278–291 (1964)

    Google Scholar 

  11. B.L. Ehle, On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems. University of Waterloo, (2010), 1969

    Google Scholar 

  12. W. Fair, Y.L. Luke, Padé approximations to the operator exponential. Numer. Math. 14 (4), 379–382 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Faulhaber, Analytic methods for pricing double barrier options in the presence of stochastic volatility, PhD thesis, Mathematical Department of the University of Kaiserslautern, Germany, 2002

    Google Scholar 

  14. G.A. Baker Jr., P. Graves-Morris, Páde Approximants (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  15. A.A. Gonchar, E.A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions. Mathematics Sbornik 62, 306–352 (1987). In Russian

    MATH  Google Scholar 

  16. T. Haentjens, K.J. In’t Hout, Alternating direction implicit finite difference schemes for the Heston–Hull–White partial differential equation. J. Comput. Finance 16, 83–110 (2012)

    Article  Google Scholar 

  17. F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie. Ber Verh Saechs Akad Wiss 58, 19–48 (1906)

    MATH  Google Scholar 

  18. S. Heston, A closed-form solution for options with stochastic volatility, with application to bond and currency options. Rev. Financ. Stud. 6 (2), 327–343 (1993)

    Article  Google Scholar 

  19. N.J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, 2002)

    Book  MATH  Google Scholar 

  20. Joe D. Hoffman, Numerical Methods for Engineers and Scientists (CRC Press, Boca Raton, 2001)

    MATH  Google Scholar 

  21. J.C. Hull, Options, Futures, and Other Derivatives, 3rd edn. (Prentice Hall, Upper Saddle River, 1997)

    MATH  Google Scholar 

  22. S. Ikonen, J. Toivanen, Operator splitting methods for American option pricing. Appl. Math. Lett. 17, 809–814 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. K.J. In’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7 (2), 303–320 (2010)

    MathSciNet  Google Scholar 

  24. K.J. In’t Hout, B.D. Welfert, Stability of ADI schemes applied to convection–diffusion equations with mixed derivative terms. Appl. Numer. Math. 57, 19–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Itkin, P. Carr, Jumps without tears: A new splitting technology for barrier options. Int. J. Numer. Anal. Model. 8 (4), 667–704 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Y. Jiang, C.W. Shu, M. Zhang, High-order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates. Math. Models Methods Appl. Sci. 25 (8), 1553–1588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Kangro, R. Nicolaides, Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38 (4), 1357–1368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. A.Q.M. Khaliq, B.A. Wade, M. Yousuf, J. Vigo-Aguiar, High order smoothing schemes for inhomogeneous parabolic problems with applications in option pricing. Numer. Methods Partial Differ. Equ. 23 (5), 1249–1276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. O. Koch, M. Thalhammer, Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations. Technical report, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2011

    Google Scholar 

  30. D. Lanser, J.G. Verwer, Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comput. Appl. Math. 111 (1-2), 201–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Lipton, A. Sepp, Credit value adjustment in the extended structural default model, in The Oxford Handbook of Credit Derivatives, pp. 406–463 (Oxford University Press, Oxford, 2011)

    Google Scholar 

  32. J. Lörinczi, F. Hiroshima, V. Betz, Feynman–Kac-Type Theorems and Gibbs Measures on Path Space. Number 34 in De Gruyter Studies in Mathematics (Walter de Gruyter GmbH & Co, Berlin/Boston, 2011)

    Google Scholar 

  33. G.I. Marchuk, Methods of Numerical Mathematics (Springer, New York, 1975)

    Book  MATH  Google Scholar 

  34. C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. D.M. Pooley, K. Vetzal, P.A. Forsyth, Convergence remedies for nonsmoothing payoffs in option pricing. J. Comput. Finance 6 (4), 25–40 (2003)

    Article  Google Scholar 

  36. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (1992)

    Google Scholar 

  37. R. Rannacher, Finite element solution of diffusion equation with irregular data,. Numer. Math. 43, 309–327 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. A.A. Samarski, Economical difference schemes for parabolic equations with mixed derivatives. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki 4 (4), 753–759 (1964)

    Google Scholar 

  39. T. Schmelzer, L.N. Trefethen, Evaluating matrix functions for exponential integrators via Carathéodory–Féjer approximation and contour integrals. ETNA 29 (1), 1–18 (2007)

    MATH  Google Scholar 

  40. M. Shashkov, Conservative Finite-Difference Methods on General Grids (CRC Press, Boca Raton, 1996)

    MATH  Google Scholar 

  41. W.F. Spotz, G.F. Carey, Extension of high-order compact schemes to time-dependent problems. Numer. Methods Partial Differ. Equ. 17 (6), 657–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 509–517 (1968)

    Article  MathSciNet  Google Scholar 

  43. D.Y. Tangman, A.A.I. Peer, N. Rambeerich, M. Bhuruth, Fast simplified approaches to Asian option pricing. J. Comput. Finance 14 (4), 3–36 (2011)

    Article  Google Scholar 

  44. D.Y. Tangman, A. Gopaul, M. Bhuruth, Numerical pricing of options using high-order compact finite difference schemes. J. Comput. Appl. Math. 218, 27–0280 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Tavella, C. Randall, Pricing Financial Instruments. The Finite-Difference method. Wiley Series in Financial Engineering (Wiley, New York, 2000)

    Google Scholar 

  46. L.N. Trefethen, J.A.C. Weideman, T. Schmelzer, Talbot quadratures and rational approximations. BIT Numer. Math. 46 (3), 653–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. B.A. Wade, A.Q.M. Khaliq, M. Siddique, M. Yousuf, Smoothing with positivity-preserving Padé schemes for parabolic problems with nonsmooth data. Numer. Methods Partial Differ. Equ. 21 (3), 553–573 (2005)

    Article  MATH  Google Scholar 

  48. N.N. Yanenko, The Method of Fractional Steps (Springer, New York, 1971)

    Book  MATH  Google Scholar 

  49. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. 150A, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

  50. D. You, A high-order Padé ADI method for unsteady convection–diffusion equations. J. Comput. Phys. 214, 1–11 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Itkin, A. (2017). Modern Finite Difference Approach. In: Pricing Derivatives Under Lévy Models . Pseudo-Differential Operators, vol 12. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-6792-6_2

Download citation

Publish with us

Policies and ethics