Skip to main content

Magnetoencephalography and Magnetic Source Modeling

  • Chapter
  • First Online:
Epilepsy Board Review
  • 2335 Accesses

Abstract

Magnetoencephalography (MEG) is a technique for recording weak magnetic fields generated by electrical activity within the brain. These neuromagnetic signals are generated by the same processes that give rise to EEG signals. However, the recording of these signals requires specialized sensors operating at very low temperatures within magnetically shielded environments. MEG systems used for clinical studies allow multichannel recordings from a few hundred sensors located around the head. Several source modeling techniques are available to localize the intracranial generators of the recorded activity. In patients with epilepsy, MEG together with magnetic source modeling can help localize the sources of spontaneous epileptic activity and ictal discharges. MEG can also be used to localize the generators of evoked responses to somatosensory, visual, auditory, motor, and language stimuli, making it a powerful noninvasive tool for mapping functional cortices. This chapter provides an overview of MEG and its place in presurgical evaluations for epilepsy surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science. 1972;175(4022):664–6.

    Article  CAS  PubMed  Google Scholar 

  2. Leahy RM, et al. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol. 1998;107(2):159–73.

    Article  CAS  PubMed  Google Scholar 

  3. Dale AM, et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;26(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  4. Lin PT, Berger MS, Nagarajan SS. Motor field sensitivity for preoperative localization of motor cortex. J Neurosurg. 2006;105(4):588–94.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nagarajan S, et al. Preoperative localization of hand motor cortex by adaptive spatial filtering of magnetoencephalography data. J Neurosurg. 2008;109(2):228–37.

    Article  PubMed  Google Scholar 

  6. Papanicolaou AC, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100(5):867–76.

    Article  PubMed  Google Scholar 

  7. Doss RC, et al. Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia. 2009;50(10):2242–8.

    Article  PubMed  Google Scholar 

  8. Wheless JW, et al. A comparison of magnetoencephalography, MRI, and V-EEG in patients evaluated for epilepsy surgery. Epilepsia. 1999;40(7):931–41.

    Article  CAS  PubMed  Google Scholar 

  9. Funke ME, et al. The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia. 2011;52(Suppl 4):10–4.

    Article  PubMed  Google Scholar 

  10. Moore KR, et al. Magnetoencephalographically directed review of high-spatial-resolution surface-coil MR images improves lesion detection in patients with extratemporal epilepsy. Radiology. 2002;225(3):880–7.

    Article  PubMed  Google Scholar 

  11. Wilenius J, et al. Interictal MEG reveals focal cortical dysplasias: special focus on patients with no visible MRI lesions. Epilepsy Res. 2013;105(3):337–48.

    Article  PubMed  Google Scholar 

  12. Knake S, et al. The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res. 2006;69(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  13. Knowlton RC, et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol. 2008;64(1):35–41.

    Article  PubMed  Google Scholar 

  14. Knowlton RC, et al. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann Neurol. 2008;64(1):25–34.

    Article  PubMed  Google Scholar 

  15. Paulini A, et al. Lobar localization information in epilepsy patients: MEG—a useful tool in routine presurgical diagnosis. Epilepsy Res. 2007;76(2–3):124–30.

    Article  PubMed  Google Scholar 

  16. Knowlton RC, et al. Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol. 2009;65(6):716–23.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sutherling WW, et al. Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology. 2008;71(13):990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Raghavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Raghavan, M. (2017). Magnetoencephalography and Magnetic Source Modeling. In: Koubeissi, M., Azar, N. (eds) Epilepsy Board Review. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6774-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6774-2_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6772-8

  • Online ISBN: 978-1-4939-6774-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics