Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

To reserve or not for bursty video traffic over wireless access networks has been a long-debated issue. Reservation can ensure QoS provisioning at the cost of lower resource utilization. Contention-based MAC is more flexible and efficient in sharing resources for bursty traffic by a higher multiplexing gain, but the QoS may degrade severely with the increase of traffic load. In wireless networks using hybrid MAC, nodes can reserve time periods inside scheduling cycles and the time not reserved can be used by all stations through contention-based access. The hybrid MAC is attractive because each video source reserves well below its peak data rate and uses contention-based media access to transmit the remainder/bursts of the traffic. Thus, satisfactory QoS may be provided by resource reservation and high channel utilization can be achieved due to the multiplexing gain in the contention periods. In this chapter, we first introduce the hybrid hard and soft-reservation schemes and then present the analytical models. We illustrate how to use the mean value analysis approach to calculate the collision probability and the average service time of a frame. Furthermore, using the standard WiMedia MAC protocols as an example, extensive simulations using NS-2 and real video traces are given which verify the analysis and demonstrate the effectiveness of the hybrid MAC. The results show that the hybrid MAC, especially with soft reservation, has much better delay performance and higher capacity (supporting more video streaming flows) than the contention or reservation-only MAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that if transmission errors happen in the burst transaction during reserved periods, the frames that need to be retransmitted can be queued in the C-Buffer. In this chapter, we only consider collisions and ignore transmission errors to simplify the analysis.

  2. 2.

    For easy presentation, we reuse the notations of T A , T S , etc., so they also represent the averages of the corresponding durations in the equations in this section.

References

  1. Aad, I., Castelluccia, C.: Differentiation mechanisms for IEEE 802.11. In: Proceedings of IEEE/ACM International Conference on Computer Communications (INFOCOM), Anchorage, AK, pp. 209–218 (2001)

    Google Scholar 

  2. Akyildiz, I.F., McNair, J., Martorell, L.C., Puigjaner, R., Yesha, Y.: Medium access control protocols for multimedia traffic in wireless networks. IEEE Netw. 13 (4), 39–47 (1999)

    Article  Google Scholar 

  3. Amendment of parts 2, 15, and 97 of the commission’s rules to permit use of radio frequencies above 40 GHz for new radio applications. Technical Report FCC 95-499, Federal Communications Commission (FCC) (1995)

    Google Scholar 

  4. Amitay, N., Greenstein, L.J.: Resource auction multiple access (RAMA) in the cellular environment. IEEE Trans. Veh. Technol. 43 (4), 1101–1111 (1994)

    Article  Google Scholar 

  5. Assi, C.M., Agarwal, A., Liu, Y.: Enhanced per-flow admission control and QoS provisioning in IEEE 802.11e wireless LANs. IEEE Trans. Veh. Technol. 57 (2), 1077–1088 (2008)

    Google Scholar 

  6. Barry, M.G., Campbell, A.T., Veres, A.: Distributed control algorithms for service differentiation in wireless packet networks. In: Proceedings of IEEE/ACM International Conference on Computer Communications (INFOCOM), Anchorage, AK, pp. 582–590 (2001)

    Google Scholar 

  7. Batra, A., Balakrishnan, J., Aiello, G.R., Foerster, J.R., Dabak, A.: Design of a multiband OFDM system for realistic UWB channel environments. IEEE Trans. Microwave Theory Tech. 52 (9), 2123–2138 (2004)

    Article  Google Scholar 

  8. Battiti, R., Li, B.: Supporting service differentiation with enhancements of the IEEE 802.11 MAC protocol: models and analysis. Technical Report, University of Trento, Trento (2003)

    Google Scholar 

  9. Baykas, T., Sum, C.S., Lan, Z., Wang, J., Rahman, M.A., Harada, H., Kato, S.: IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49 (7), 114–121 (2011)

    Google Scholar 

  10. Benveniste, M.: TCMA proposed draft text. Technical Report Doc. 802.11-01/117r2, IEEE Working Group (2001)

    Google Scholar 

  11. Beshai, M.: The poissonian-spectrum method for treating a loss system serving non-poissonian multi-bit-rate traffic. In: Proceedings of IEEE/ACM International Conference on Computer Communications (INFOCOM), Ottawa, ON, pp. 1010–1019 (1989)

    Google Scholar 

  12. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18 (3), 535–547 (2000)

    Google Scholar 

  13. Bianchi, G., Tinnirello, I.: Analysis of priority mechanisms based on differentiated inter frame spacing in CSMA/CA. In: Proceedings of IEEE Vehicular Technology Conference (VTC-Fall), Jeju Island, pp. 1401–1405 (2003)

    Google Scholar 

  14. Bianchi, G., Tinnirello, I.: Remarks on IEEE 802.11 DCF performance analysis. IEEE Commun. Lett. 9 (8), 765–767 (2005)

    Google Scholar 

  15. Bluetooth core version 4.0 specification. Technical Report V4.0, Bluetooth special interest group (SIG) (2010). https://www.bluetooth.org/Technical/Specifications/adopted.htm

  16. Bluetooth core version 4.1 specification. Technical Report V4.0, Bluetooth special interest group (SIG) (2013). https://www.bluetooth.org/Technical/Specifications/adopted.htm

  17. Boulis, A., Smith, D., Miniutti, D., Libman, L., Tselishchev, Y.: Challenges in body area networks for healthcare: the MAC. IEEE Commun. Mag. 50 (5), 100–106 (2012)

    Article  Google Scholar 

  18. Cai, X.L., Shen, X., Cai, L., Mark, J.W., Xiao, Y.: Voice capacity analysis of WLAN with unbalanced traffic. IEEE Trans. Veh. Technol. 55 (3), 752–761 (2006)

    Article  Google Scholar 

  19. Cao, H., Leung, V., Chow, C., Chan, H.: Enabling technologies for wireless body area networks: A survey and outlook. IEEE Commun. Mag. 47 (12), 84–93 (2009)

    Article  Google Scholar 

  20. Chatzimisios, P., Boucouvalas, A., Vitsas, V.: IEEE 802.11 packet delay a finite retry limit analysis. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), San Fransisco, CA, pp. 950–954 (2003)

    Google Scholar 

  21. Chen, D., Gu, D., Zhang, J.: Supporting real-time traffic with QoS in IEEE 802.11e based home networks. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, pp. 205–209 (2004)

    Google Scholar 

  22. Chen, X., Zhai, H., Tian, X., Fang, Y.: Supporting QoS in IEEE 802.11e wireless LANs. IEEE Trans. Wirel. Commun. 5 (8), 2217–2227 (2006)

    Google Scholar 

  23. Cheng, H.T., Zhuang, W.: Novel packet-level resource allocation with effective QoS provisioning for wireless mesh networks. IEEE Trans. Veh. Technol. 8 (2), 694–700 (2009)

    Google Scholar 

  24. Cheng, Y., Ling, X., Song, W., Cai, L.X., Zhuang, W., Shen, X.: A cross-layer approach for WLAN voice capacity planning. IEEE J. Sel. Areas Commun. 25 (4), 678–688 (2007)

    Article  Google Scholar 

  25. Chesson, G., et al.: EDCF proposed draft text. Technical Report Doc. 802.11-01/131r1, IEEE Working Group (2001)

    Google Scholar 

  26. Chou, C.T., Sai-Shankar, N., Shin, K.G.: Achieving per-stream QoS with distributed airtime allocation and admission control in IEEE 802.11e wireless LANs. In: Proceedings of IEEE/ACM International Conference on Computer Communications (INFOCOM), Miami, FL, pp. 1584–1595 (2005)

    Google Scholar 

  27. Chung, W.S., Un, C.K.: Collision resolution algorithm for M-priority users. IEE Proc. Commun. 142 (3), 151–157 (1995)

    Article  Google Scholar 

  28. Cisco visual networking index: flobal mobile data traffic forecast update, 2012–2017. Technical Report, Cisco (2013)

    Google Scholar 

  29. Daneshi, M.: Distributed reservation algorithms for video streaming over WiMedia UWB networks. Master’s thesis, University of Victoria, BC (2009)

    Google Scholar 

  30. Daneshi, M., Pan, J., Ganti, S.: Distributed reservation algorithms for video streaming over UWB-based home networks. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, pp. 1–6 (2010)

    Google Scholar 

  31. Daneshi, M., Pan, J., Ganti, S.: Towards an efficient reservation algorithm for distributed reservation protocols. In: Proceedings of IEEE/ACM International Conference on Computer Communications (INFOCOM), San Diego, CA, pp. 1855–1863 (2010)

    Google Scholar 

  32. Delbrouck, L.: A unified approximate evaluation of congestion functions for smooth and peaky traffics. IEEE Trans. Commun. 29 (2), 85–91 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deng, D.J., Yen, H.C.: Quality-of-service provisioning system for multimedia transmission in IEEE 802.11 wireless LANs. IEEE J. Sel. Areas Commun. 23 (6), 1240–1252 (2005)

    Google Scholar 

  34. Djukic, P., Valaee, S.: Distributed link scheduling for TDMA mesh networks. In: Proceedings of IEEE International Conference on Communications (ICC), Glasgow, pp. 3823–3828 (2007)

    Google Scholar 

  35. Duan, C., Pekhteryev, G., Fang, J., Nakache, Y., Zhang, J., Tajima, K., Nishioka, Y., Hirai, H.: Transmitting multiple HD video streams over UWB links. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, pp. 691–695 (2006)

    Google Scholar 

  36. Elnoubi, S., Alsayh, A.M.: A packet reservation multiple access (PRMA)-based algorithm for multimedia wireless system. IEEE Trans. Veh. Technol. 53 (1), 215–222 (2004)

    Article  Google Scholar 

  37. End-user multimedia QoS categories. Technical Report G.1010, International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) (2001)

    Google Scholar 

  38. Engelstad, P., Osterbo, O.: Analysis of the total delay of IEEE 802.11e EDCA and 802.11 DCF. In: Proceedings of IEEE International Conference on Communications (ICC), Istanbul, pp. 552–559 (2006)

    Google Scholar 

  39. Falconer, D.D., Adachi, F., Gudmundson, B.: Time division multiple access methods for wireless personal communications. IEEE Commun. Mag. 33 (1), 50–57 (1995)

    Article  Google Scholar 

  40. First report and order in the matter of revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Technical Report FCC 02-48, Federal Communications Commission (FCC) (2002)

    Google Scholar 

  41. Foh, C., Zukerman, M., Tantra, J.: A markovian framework for performance evaluation of IEEE 802.11. IEEE Trans. Wirel. Commun. 6 (4), 1276–1285 (2007)

    Google Scholar 

  42. Frigon, J.F., Leung, V.C.M., Chan Bun Chan, H.: Dynamic reservation TDMA protocol for wireless ATM networks. IEEE J. Sel. Areas Commun. 19 (2), 370–383 (2001)

    Google Scholar 

  43. Garetto, M., Chiasserini, C.F.: Performance analysis of the 802.11 distributed coordination function under sporadic traffic. Networking 2005. In: Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems: 4th International IFIP-TC6 Networking Conference, Waterloo, 2–6 May 2005

    Google Scholar 

  44. Generic criteria for version 1.0 wireless access communications system (WACS). Technical Report TA-NWT-001313, Bellcore Technical Advisory (1992)

    Google Scholar 

  45. Glabowski, M., Kubasik, K., Stasiak, M.: Modelling of systems with overflow multi-rate traffic and finite number of traffic sources. In: Proceedings of International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Graz, pp. 196–199 (2008)

    Google Scholar 

  46. Goodman, D.: Trends in cellular and cordless communications. IEEE Commun. Mag. 29 (6), 31–40 (1991)

    Article  Google Scholar 

  47. Hall, P.S., Hao, Y.: Antennas and Propagation for Body-Centric Wireless Communications. Artech House, Boston (2006)

    Google Scholar 

  48. He, J., Zheng, L., Yang, Z., Chou, C.T.: Performance analysis and service differentiation in IEEE 802.11 WLAN. In: Proceedings of IEEE Conference on Local Computer Networks (LCN), Bonn, pp. 691–697 (2003)

    Google Scholar 

  49. High rate ultra wideband PHY and MAC standard. Technical Report ECMA-368, WiMedia Alliance (2005). http://www.ecma-international.org/publications/standards/Ecma-368.htm

  50. Hossain, E., Bhargava, V.K.: A centralized TDMA-based scheme for fair bandwidth allocation in wireless IP networks. IEEE J. Sel. Areas Commun. 19 (11), 2201–2214 (2001)

    Article  Google Scholar 

  51. Howarth, J.A., et al.: Towards a 60 GHz gigabit System-On-Chip. In: Proceedings of Wireless World Research Forum Meeting (WWRF), Shanghai (2006)

    Google Scholar 

  52. Huang, Y.K., Pang, A.C., Hsiu, P.C., Zhuang, W., Liu, P.: Distributed throughput optimization for ZigBee cluster-tree networks. IEEE Trans. Parallel Distrib. Syst. 23 (3), 513–520 (2012)

    Article  Google Scholar 

  53. Hui, J., Devetsikiotis, M.: Designing improved MAC packet scheduler for 802.11e WLAN. In: Proceedings of IEEE Global Communications Conference (GLOBECOM) San Francisco, CA, pp. 184–189 (2003)

    Google Scholar 

  54. IEEE standard for wireless medium access control (MAC) and physical layer (PHY) specifications: medium access control (MAC) quality of service enhancements. Technical Report IEEE 802.11e-2005, IEEE Standards Association - Wireless LAN Working Group (2005)

    Google Scholar 

  55. Jiang, H., Wang, P., Zhuang, W., Shen, X.: An interference aware distributed resource management scheme for CDMA-based wireless mesh backbone. IEEE Trans. Wirel. Commun. 6 (12), 4558–4567 (2007)

    Article  Google Scholar 

  56. Kato, S., Harada, H., Funada, R., Baykas, T., Sum, C.S., Wang, J., Rahman, M.A.: Single carrier transmission for multi-gigabit 60-GHz WPAN systems. IEEE J. Sel. Areas Commun. 27 (8), 1466–1478 (2009)

    Article  Google Scholar 

  57. Kumar, A., Altman, E., Miorandi, D., Goyal, M.: New insights from a fixed point analysis of single cell IEEE 802.11 WLANs. IEEE/ACM Trans. Netw. 15 (3), 588–601 (2007)

    Google Scholar 

  58. Lee, J.G., Corson, M.S.: The performance of an “imbedded” Aloha protocol in wireless networks. In: Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Taipei, vol. 2, pp. 377–381 (1996)

    Google Scholar 

  59. Ling, X.: Performance analysis of distributed MAC protocols for wireless networks. Ph.D. dissertation, University of Waterloo, Ontario (2007)

    Google Scholar 

  60. Ling, X., Liu, K.H., Cheng, Y., Shen, X.: A novel performance model for distributed prioritized MAC protocols. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Washington, DC, pp. 4692–4696 (2007)

    Google Scholar 

  61. Ling, X., Cheng, Y., Mark, J.W., Shen, X.: A renewal theory based analytical model for the contention access period of IEEE 802.15.4 MAC. IEEE Trans. Wirel. Commun. 7 (6), 2340–2349 (2008)

    Google Scholar 

  62. Liu, K.H., Shen, X., Zhang, R., Cai, L.: Delay analysis of distributed reservation protocol with uwb shadowing channel for WPAN. In: Proceedings of IEEE International Conference on Communications (ICC), Beijing, pp. 2769–2774 (2008)

    Google Scholar 

  63. Liu, K.H., Ling, X., Shen, X., Mark, J.W.: Performance analysis of prioritized MAC in UWB WPAN with bursty multimedia traffic. IEEE Trans. Veh. Technol. 57 (4), 2462–2473 (2008)

    Article  Google Scholar 

  64. Liu, K.H., Shen, X., Zhang, R., Cai, L.: Performance analysis of distributed reservation protocol for UWB-based WPAN. IEEE Trans. Veh. Technol. 58 (2), 902–913 (2009)

    Article  Google Scholar 

  65. Local and metropolitan area networks - wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Technical Report IEEE 802.11-1997, IEEE Standards Association - LAN/MAN Standards Committee (1997)

    Google Scholar 

  66. Ma, X., Refai, H.H.: Analysis of sliding frame R-ALOHA protocol for real-time distributed wireless networks. Wirel. Netw. 15 (8), 1102–1112 (2009)

    Article  Google Scholar 

  67. Malone, D., Dangerfield, I., Leith, D.: Verification of common 802.11 MAC model assumptions. In: Proceedings of Passive and Active Measurement Conference (PAM), Louvain-la-Neuve, pp. 63–72 (2007)

    Google Scholar 

  68. Matrawy, A., Lambadaris, I., Huang, C.: MPEG4 traffic modeling using the transform expand sample methodology. In: Proceedings of IEEE International Workshop on Networked Appliances (IWNA), Liverpool, pp. 249–256 (2002)

    Google Scholar 

  69. MBOA wireless medium access control (MAC) specification for high rate wireless personal area networks (WPANS). Technical Report MBOA MAC Specification Draft 0.65, Multiband OFDM Alliance (2004). http://www.multibandofdm.org/

  70. Network simulator 2 (NS-2): version 2.33 (2008)

    Google Scholar 

  71. One-way transmission time. Technical Report G.114, International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) (2003)

    Google Scholar 

  72. Papantoni-Kazakos, T., Likhanov, N.B., Tsybakov, B.: A protocol for random multiple access of packets with mixed priorities in wireless networks. IEEE J. Sel. Areas Commun. 13 (7), 1324–1331 (1995)

    Article  Google Scholar 

  73. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high speed physical layer in the 5 GHz band. Technical Report IEEE 802.11a-1999, IEEE Standards Association - Wireless LAN Working Group (1999)

    Google Scholar 

  74. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: higher speed physical layer (PHY) extension in the 2.4 GHz band. Technical Report IEEE 802.11b-1999, IEEE Standards Association - Wireless LAN Working Group (1999)

    Google Scholar 

  75. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: further higher data rate extension in the 2.4 GHz band. Technical Report IEEE 802.11g-2003, IEEE Standards Association - Wireless LAN Working Group (2003)

    Google Scholar 

  76. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Technical Report IEEE 802.11-2007, IEEE Standards Association - Wireless LAN Working Group (2007)

    Google Scholar 

  77. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: enhancements for higher throughput. Technical Report IEEE 802.11n-2009, IEEE Standards Association - Wireless LAN Working Group (2009)

    Google Scholar 

  78. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: interworking with external networks. Technical Report IEEE 802.11u-2011, IEEE Standards Association - Wireless LAN Working Group (2011)

    Google Scholar 

  79. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Technical Report IEEE 802.11-2012, IEEE Standards Association - Wireless LAN Working Group (2012)

    Google Scholar 

  80. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: enhancements for very high throughput for operation in bands below 6 GHz. Technical Report IEEE 802.11ac-2013, IEEE Standards Association - Wireless LAN Working Group (2012)

    Google Scholar 

  81. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: enhancements for very high throughput in the 60 GHz band. Technical Report IEEE 802.11ad-2012, IEEE Standards Association - Wireless LAN Working Group (2012)

    Google Scholar 

  82. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: television white spaces (TVWS) operation. Technical Report IEEE 802.11af-2013, IEEE Standards Association - Wireless LAN Working Group (2013)

    Google Scholar 

  83. Part 15: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPAN). Technical Report IEEE 802.15.1-2002, IEEE Standards Association - WPAN Working Group (2002)

    Google Scholar 

  84. Part 15.1a: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPAN). Technical Report IEEE 802.15.1-2005, IEEE Standards Association - WPAN Working Group (2005)

    Google Scholar 

  85. Part 15.2: coexistence of wireless personal area networks with other wireless devices operating in unlicensed frequency bands. Technical Report IEEE 802.15.2-2003, IEEE Standards Association - WPAN Working Group (2003)

    Google Scholar 

  86. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPAN). Technical Report IEEE 802.15.3-2003, IEEE Standards Association - WPAN Working Group (2003)

    Google Scholar 

  87. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPAN). Amendment to MAC sublayer. Technical Report IEEE 802.15.3b-2005, IEEE Standards Association - WPAN Working Group (2005)

    Google Scholar 

  88. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPAN). Millimeter-wave-based alternative physical layer extension. Technical Report IEEE 802.15.3c-2009, IEEE Standards Association - WPAN Working Group (2009)

    Google Scholar 

  89. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). Technical Report IEEE 802.15.4-2003, IEEE Standards Association - WPAN Working Group (2003)

    Google Scholar 

  90. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). Technical Report IEEE 802.15.4-2006, IEEE Standards Association - WPAN Working Group (2006)

    Google Scholar 

  91. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). Add alternate phys. Technical Report IEEE 802.15.4a-2007, IEEE Standards Association - WPAN Working Group (2007)

    Google Scholar 

  92. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). Alternative physical layer extension to support one or more of the chinese 314–316 MHz, 430–434 MHz, and 779–787 MHz bands. Technical Report IEEE 802.15.4c-2009, IEEE Standards Association - WPAN Working Group (2009)

    Google Scholar 

  93. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). Alternative physical layer extensionto support the japanese 950 MHz bands. Technical Report IEEE 802.15.4d-2009, IEEE Standards Association - WPAN Working Group (2009)

    Google Scholar 

  94. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs): active radio frequency identification (RFID) system physical layer (PHY). Technical Report IEEE 802.15.4f-2012, IEEE Standards Association - WPAN Working Group (2012)

    Google Scholar 

  95. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs): MAC sublayer. Technical Report IEEE 802.15.4e-2012, IEEE Standards Association - WPAN Working Group (2012)

    Google Scholar 

  96. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs): Physical layer (PHY) specifications for low-data-rate, wireless, smart metering utility networks. Technical Report IEEE 802.15.4g-2012, IEEE Standards Association - WPAN Working Group (2012)

    Google Scholar 

  97. Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). Technical Report IEEE 802.15.4-2015, IEEE Standards Association - WPAN Working Group (2015)

    Google Scholar 

  98. Part 15.5: Mesh topology capability in wireless personal area networks (WPANs). Technical Report IEEE 802.15.5-2009, IEEE Standards Association - WPAN Working Group (2009)

    Google Scholar 

  99. Part 15.6: Wireless body area networks. Technical Report IEEE 802.15.6-2012, IEEE Standards Association - WPAN Working Group (2012)

    Google Scholar 

  100. Part 15.7: Short-range wireless optical communication using visible light. Technical Report IEEE 802.15.7-2011, IEEE Standards Association - WPAN Working Group (2011)

    Google Scholar 

  101. Pattara-Atikom, W., Krishnamurthy, P., Banerjee, S.: Distributed mechanisms for quality of service in wireless LANs. IEEE Wirel. Commun. 10 (3), 26–34 (2003)

    Article  Google Scholar 

  102. Pavon, J.D.P., Shankar, N.S., Gaddam, V., Challapali, K., Chou, C.T.: The MBOA-WiMedia specification for ultra wideband distributed networks. IEEE Commun. Mag. 44 (6), 128–134 (2006)

    Google Scholar 

  103. Personal digital cellular telecommunication system: Technical Report RCR STD-27 (2008)

    Google Scholar 

  104. Personal handy phone system: Techical Report RCR STD-28 (2011)

    Google Scholar 

  105. Qiao, D., Shin, K.G.: Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802.11 WLAN under the DCF. In: Proceedings of IEEE International Workshop on Quality of Service (IWQoS), Miami, FL, pp. 227–236 (2002)

    Google Scholar 

  106. Qiu, X., Li, V.O.K.: Dynamic reservation multiple access (DRMA): a new multiple access scheme for personal communication system (PCS). Wirel. Netw. 2 (2), 117–128 (1996)

    Article  MathSciNet  Google Scholar 

  107. Qiu, R.C., Liu, H., Shen, X.: Ultra-wideband for multiple access communications. IEEE Commun. Mag. 43 (2), 80–87 (2005)

    Article  Google Scholar 

  108. Ramaiyan, V., Kumar, A., Altman, E.: Fixed point analysis of single cell IEEE 802.11e WLANs: uniqueness and multistability. IEEE/ACM Trans. Netw. 16 (5), 1080–1093 (2008)

    Google Scholar 

  109. Roberts, J., Mocci, U., Virtamo, J.: Broadband Network Teletraffic. Final Report of Action COST 242. Springer, Berlin (1996)

    Google Scholar 

  110. Robinson, J.W., Randhawa, T.S.: Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function. IEEE J. Sel. Areas Commun. 22 (5), 917–928 (2004)

    Google Scholar 

  111. Roy, S., Foerster, J.R., Somayazulu, V.S., Leeper, D.G.: Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity. Proc. IEEE 92 (2), 295–311 (2004)

    Google Scholar 

  112. Ruby, R., Pan, J.: Video streaming with PCA and hard vs soft DRP. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Miami, FL, pp. 1–6 (2010)

    Google Scholar 

  113. Ruiz, J.A., Shimamoto, S.: Novel communication services based on human body and environment interaction: applications inside trains and applications for handicapped people. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Las Vegas, NV, pp. 2240–2245 (2006)

    Google Scholar 

  114. Saberinia, E., Tewfik, A.H.: Pulsed and non-pulsed OFDM ultra wideband wireless personal area networks. In: Proceedings of IEEE Ultra Wideband Systems and Technologies (UWBST), Reston, VA, pp. 275–279 (2002)

    Google Scholar 

  115. Sadri, A.: Summary of usage models for 802.15. 3c. Technical Report 15, IEEE P802 (2006)

    Google Scholar 

  116. Saleh, A.A., Valenzuela, R.A.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. 5 (2), 128–137 (1987)

    Article  Google Scholar 

  117. Shah, R.C., Yarvis, M.D.: Characteristics of on-body 802.15.4 networks. In: Proceedings of IEEE Workshop on Wireless Mesh Networks (WiMesh), Reston, VA, pp. 138–139 (2006)

    Google Scholar 

  118. Shen, X., Zhuang, W., Jiang, H., Cai, J.: Medium access control in ultra-wideband wireless networks. IEEE Trans. Veh. Technol. 54 (5), 1663–1677 (2005)

    Article  Google Scholar 

  119. Sheu, S.T., Sheu, T.F.: A bandwidth allocation/sharing/extension protocol for multimedia over IEEE 802.11 ad hoc wireless LANs. IEEE J. Sel. Areas Commun. 19 (10), 2065–2080 (2001)

    Google Scholar 

  120. Smith, D., Miniutti, D., Hanlen, L.: Characterization of the body-area propagation channel for monitoring a subject sleeping. IEEE Trans. Antennas Propag. 59 (11), 4388–4392 (2011)

    Article  Google Scholar 

  121. Stavrakakis, I., Kazakos, D.: A multiuser random-access communication system for users with different priorities. IEEE Trans. Commun. 39 (11), 1538–1541 (1991)

    Article  Google Scholar 

  122. Takizawa, K., Aoyagi, T., Kohno, R.: Channel modeling and performance evaluation of UWB-based wireless body area networks. In: Proceedings of IEEE International Conference on Communications (ICC), Dresden, pp. 1–5 (2009)

    Google Scholar 

  123. Tasaka, S., Hayashi, K., Ishihashi, Y.: Integrated video and data transmission in the TDD ALOHA-reservation wireless LAN. In: Proceedings of IEEE International Conference on Communications (ICC), Seattle, WA, vol. 3, pp. 1387–1393 (1995)

    Google Scholar 

  124. Telecommunications and information exchange between systems local and metropolitan area networks-specific requirements part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Technical Report IEEE P802.11, IEEE Standards Association - Wireless LAN Working Group (1999)

    Google Scholar 

  125. TG3c channel modeling sub-committee final report. Technical Report IEEE802.15-07-0584-00-003c, IEEE P802.15 Working Group for Wireless Personal Area Networks (2007)

    Google Scholar 

  126. Tickoo, O., Sikdar, B.: Modeling queueing and channel access delay in unsaturated IEEE 802.11 random access MAC based wireless networks. IEEE/ACM Trans. Netw. 16 (4), 878–891 (2008)

    Google Scholar 

  127. Tinnirello, I., Bianchi, G.: Rethinking the IEEE 802.11e EDCA performance modeling methodology. IEEE/ACM Trans. Netw. 18 (2), 540–553 (2010)

    Google Scholar 

  128. Triple-play services quality of experience (QoE) requirements. Technical Report TR-126, DSL Forum Architecture & Transport Working Group (2006)

    Google Scholar 

  129. Ullah, S., Mohaisen, M., Alnuem, M.A.: A review of IEEE 802.15.6 MAC, PHY, and security specifications. Hindawi Int. J. Distrib. Sens. Netw. 9 (4), 1–12 (2013)

    Google Scholar 

  130. Vaidya, N.H., Bahl, P., Gupta, S.: Distributed fair scheduling in a wireless LAN. In: Proceedings of ACM International Conference on Mobile Computing and Networking (MOBICOM), Boston, MA, pp. 167–178 (2000)

    Google Scholar 

  131. Veres, A., Campbell, A.T., Barry, M., Sun, L.H.: Supporting service differentiation in wireless packet networks using distributed control. IEEE J. Sel. Areas Commun. 19 (10), 2081–2093 (2001)

    Article  Google Scholar 

  132. Wang, P., Zhuang, W.: A collision-free MAC scheme for multimedia wireless mesh backbone. IEEE Trans. Wirel. Commun. 8 (7), 3577–3589 (2009)

    Article  Google Scholar 

  133. Wilkinson, R.: Theories for toll traffic engineering in the U.S.A. Bell Syst. Tech. J. 35 (2), 421–514 (1956)

    Google Scholar 

  134. Wilson, P., Johnstone, M., Neely, M., Boles, D.: Dynamic storage allocation: a survey and critical review. In: Memory Management, pp. 1–116. Springer, Berlin (1995)

    Google Scholar 

  135. Wimedia logical link control protocol. Technical Report, WiMedia Alliance (2007)

    Google Scholar 

  136. Win, M.Z., et al.: Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Trans. Commun. 48 (4), 679–689 (2000)

    Article  Google Scholar 

  137. Winands, E., Denteneer, T., Resing, J., Rietman, R.: A finite-source feedback queueing network as a model for the IEEE 802.11 DCF. Eur. Trans. Telecommun. 16 (1), 77–89 (2005)

    Google Scholar 

  138. Wong, D., Chin, F., Shajan, M., Chew, Y.: Performance analysis of saturated throughput of PCA in the presence of hard DRPs in wimedia MAC. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Hong Kong, pp. 423–429 (2007)

    Google Scholar 

  139. Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: Performance of reliable transports protocol over IEEE 802.11 wireless LAN: analysis and enhancement. In: Proceedings of IEEE/ACM International Conference on Computer Communications (INFOCOM), New York, pp. 599–607 (2002)

    Google Scholar 

  140. Wu, H., Xia, Y., Zhang, Q.: Delay analysis of DRP in MBOA UWB MAC. In: Proceedings of IEEE International Conference on Communications (ICC), Istanbul, pp. 229–233 (2006)

    Google Scholar 

  141. Xiao, Y.: Backoff-based priority schemes for IEEE 802.11. In: Proceedings of IEEE International Conference on Communications (ICC), Anchorage, AK, pp. 1568–1572 (2003)

    Google Scholar 

  142. Xiao, Y.: Enhanced DCF of IEEE 802.11e to support QoS. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, pp. 1291–1296 (2003)

    Google Scholar 

  143. Xiao, Y.: Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Trans. Wirel. Commun. 4 (4), 1506–1515 (2005)

    Google Scholar 

  144. Xiao, Y., Li, H.: Evaluation of distributed admission control for the IEEE 802.11e EDCA. IEEE Commun. Mag. 42 (9), 20–24 (2004)

    Google Scholar 

  145. Xu, K., Wang, Q., Hassanein, H.: Performance analysis of differentiated QoS supported by IEEE 802.11e enhanced distributed coordination function (EDCF) in WLAN. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), San Francisco, CA, pp. 1048–1053 (2003)

    Google Scholar 

  146. Yang, L., Giannakis, G.B.: Ultra-wideband communications: an idea whose time has come. IEEE Signal Process. Mag. 21 (6), 26–54 (2004)

    Article  Google Scholar 

  147. Yu, J.Y., Liao, W.C., Lee, C.Y.: A MT-CDMA based wireless body area network for ubiquitous healthcare monitoring. In: Proceedings of Biomedical Circuits and Systems Conference (BioCAS), London, pp. 98–101 (2006)

    Google Scholar 

  148. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, 1: Fixed-Point Theorems. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  149. Zhai, H., Kwon, Y., Fang, Y.: Performance analysis of IEEE 802.11 MAC protocols in wirless LANs. Wirel. Commun. Mob. Comput. 4 (8), 917–931 (2004)

    Google Scholar 

  150. Zhang, H.: Service disciplines for guaranteed performance service in packet-switching networks. Proc. IEEE 83 (10), 1374–1396 (1995)

    Article  Google Scholar 

  151. Zhang, R., Cai, L.: A packet-level model for UWB channel with people shadowing process based on angular spectrum analysis. IEEE Trans. Wirel. Commun. 8 (8), 4048–4055 (2009)

    Article  Google Scholar 

  152. Zhang, R., Cai, L.: Joint AMC and packet fragmentation for error-control over fading channels. IEEE Trans. Veh. Technol. 59 (6), 3070–3080 (2010)

    Article  Google Scholar 

  153. Zhang, L., Shu, Y., Yang, O., Wang, G.: Study of medium access delay in IEEE 802.11 wireless networks. IEICE Trans. Commun. 89, 1284–1293 (2006)

    Google Scholar 

  154. Zhang, Y., Bin, L., Qi, C.: Characterization of on-human-body UWB radio propagation channel. Microw. Opt. Technol. Lett. 49 (6), 1356–1371 (2007)

    Article  Google Scholar 

  155. Zhang, R., Ruby, R., Pan, J., Cai, L., Shen, X.: A hybrid reservation/contention-based MAC for video streaming over wireless networks. IEEE J. Sel. Areas Commun. 28 (3), 389–398 (2010)

    Article  Google Scholar 

  156. Zhang, R., Cai, L., Pan, J.: Performance study of hybrid MAC using soft reservation for wireless networks. In: Proceedings of IEEE International Conference on Communications (ICC), Kyoto, pp. 1–5 (2011)

    Google Scholar 

  157. Zhang, R., Cai, L., Pan, J., Shen, X.: Resource management for video streaming in ad hoc networks. Elsevier Ad Hoc Netw. 9 (4), 623–634 (2011)

    Article  Google Scholar 

  158. Zhao, J., Guo, Z., Zhang, Q., Zhu, W.: Performance study of MAC for service differentiation in IEEE 802.11. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Taipei, pp. 778–782 (2002)

    Google Scholar 

  159. Zheng, Y., Lu, K., Wu, D., Fang, Y.: Performance analysis of IEEE 802.11 DCF in imperfect channels. IEEE Trans. Veh. Technol. 55 (5), 1648–1656 (2006)

    Google Scholar 

  160. Zhu, H., Chlamtac, I.: An analytical model for IEEE 802.11e EDCF differential services. In: Proceedings of International Conference on Computer Communications and Networks (ICCCN), Dallas, TX, pp. 163–168 (2003)

    Google Scholar 

  161. Zhu, H., Chlamtac, I.: Performance analysis for IEEE 802.11e EDCF service differentiation J. IEEE Trans. Wirel. Commun. 4 (4), 1779–1788 (2005)

    Google Scholar 

  162. Zhuang, W., Shen, X., Bi, Q.: Ultra-wideband wireless communications. Wirel. Commun. Mob. Comput. 3 (6), 663–685 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Zhang, R., Cai, L., Pan, J. (2017). Hybrid Medium Access for Multimedia Services. In: Resource Management for Multimedia Services in High Data Rate Wireless Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6719-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6719-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6717-9

  • Online ISBN: 978-1-4939-6719-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics