Skip to main content

Recording of Ionic Currents Under Physiological Conditions: Action Potential-Clamp and ‘Onion-Peeling’ Techniques

  • Chapter
  • First Online:
Modern Tools of Biophysics

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 5))

Abstract

Upon stimulation, excitable cells generate a transient change in the membrane potential called Action Potential (AP). The AP is governed by numerous ionic currents that flow in or out of the cell membrane. The goal of cellular electrophysiology is to understand the role of individual ionic currents and the interplay between currents in determining the profile and time course of AP. A critically important question of the field is how the ionic currents behave individually and interact collectively during the AP cycle of an excitable cell? To answer this question we need to know the dynamic behavior of ionic currents during AP and how these currents work in concert to determine the cell’s membrane potential at every moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L.-H., Yang, M., Chen, P.-S., Restrepo, J.G., Karma, A., Garfinkel, A., Qu, Z., Weiss, J.N.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94, 392–410 (2008), ISSN 00063495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Silva, J.R., Pan, H., Wu, D., Nekouzadeh, A., Decker, K.F., Cui, J., Baker, N.A., Sept, D., Rudy, Y.: A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc. Natl. Acad. Sci. U. S. A. 106, 11102–11106 (2009), ISSN 1091-6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Decker, K.F., Heijman, J., Silva, J.R., Hund, T.J., Rudy, Y.: Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium. Am. J. Physiol. Heart Circ. Physiol. 296, H1017–H1026 (2009), ISSN 03636135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doerr, T., Denger, R., Trautwein, W.: Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflügers Arch. 413, 599–603 (1989), ISSN 00316768

    Article  CAS  PubMed  Google Scholar 

  6. Starzak, M.E., Starzak, R.J.: An action potential clamp to probe the effectiveness of space clamp in axons. IEEE Trans. Biomed. Eng. BME-25, 201–204 (1978), ISSN 00189294

    Article  Google Scholar 

  7. Bezanilla, F., Rojas, E., Taylor, R.E.: Sodium and potassium conductance changes during a membrane action potential. J. Physiol. 211, 729–751 (1970), ISSN 00223751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bastian, J., Nakajima, S.: Action potential in the transverse tubules and its role in the activation of skeletal muscle. J. Gen. Physiol. 63, 257–278 (1974), ISSN 15407748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakajima, S., Bastian, J.: Double sucrose-gap method applied to single muscle fiber of Xenopus laevis. J. Gen. Physiol. 63, 235–256 (1974), ISSN 15407748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Starzak, M., Needle, M.: The action potential clamp as a test of space-clamp effectiveness—the Lettwin Analog Axon. IEEE Trans. Biomed. Eng. BME-30, 139–140 (1983), ISSN 00189294

    Article  Google Scholar 

  11. Fischmeister, R., DeFelice, L.J., Ayer Jr., R.K., Levi, R., DeHaan, R.L.: Channel currents during spontaneous action potentials in embryonic chick heart cells—the action potential patch clamp. Biophys. J. 46, 267–272 (1984), ISSN 00063495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mazzanti, M., DeFelice, L.J.: Na channel kinetics during the spontaneous heart beat in embryonic chick ventricular cells. Biophys. J. 52, 95–100 (1987), ISSN 00063495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jackson, M.B., Lecar, H., Brenneman, D.E., Fitzgerald, S., Nelson, P.G.: Electrical development in spinal cord cell culture. J. Neurosci. 2, 1052–1061 (1982), ISSN 15292401

    CAS  PubMed  Google Scholar 

  14. Doerr, T., Denger, R., Doerr, A., Trautwein, W.: Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflügers Arch. 416, 230–237 (1990), ISSN 00316768

    Article  CAS  PubMed  Google Scholar 

  15. de Haas, V., Vogel, W.: Sodium and potassium currents recorded during an action potential. Eur. Biophys. J. 17, 49–51 (1989), ISSN 01757571

    Article  PubMed  Google Scholar 

  16. Bouchard, R.A., Clark, R.B., Giles, W.R.: Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes action potential voltage-clamp measurements. Circ. Res. 76, 790–801 (1995), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  17. Barra, P.F.A.: Ionic currents during the action potential in the molluscan neurone with the self-clamp technique. Comp. Biochem. Physiol. A Physiol. 113, 185–194 (1996), ISSN 03009629

    Article  Google Scholar 

  18. Thiel, G.: Dynamics of chloride and potassium currents during the action potential in Chara studied with action potential clamp. Eur. Biophys. J. 24, 85–92 (1995), ISSN 01757571

    Article  CAS  Google Scholar 

  19. Arreola, J., Dirksen, R.T., Shieh, R.C., Williford, D.J., Sheu, S.S.: Ca2+ current and Ca2+ transients under action potential clamp in guinea pig ventricular myocytes. Am. J. Physiol. 261, C393–C397 (1991), ISSN 00029513

    CAS  PubMed  Google Scholar 

  20. Grantham, C.J., Cannell, M.B.: Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. Circ. Res. 79, 194–200 (1996), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  21. Puglisi, J.L., Yuan, W., Bassani, W.M., Bers, D.M.: Ca2+ influx through Ca2+ channels in rabbit ventricular myocytes during action potential clamp: influence of temperature. Circ. Res. 85, e7–e16 (1999), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  22. Bereczki, G., Zegers, J.G., Verkerk, A.O., Bhuiyan, Z.A., de Jonge, B., Veldkamp, M.W., Wilders, R., van Ginneken, A.C.G.: HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys. J. 88, 566–578 (2005), ISSN 00063495

    Article  Google Scholar 

  23. Wilders, R.: Dynamic clamp: a powerful tool in cardiac electrophysiology. J. Physiol. 576, 349–359 (2006), ISSN 00223751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Banyasz, T., Horvath, B., Jiang, Z., Izu, L.T., Chen-Izu, Y.: Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp. J. Mol. Cell. Cardiol. 50, 578–581 (2011), ISSN 00222828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banyasz, T., Horvath, B., Jiang, Z., Izu, L.T., Chen-Izu, Y.: Profile of L-type Ca2+ current and Na+/Ca2+ exchange current during cardiac action potential in ventricular myocytes. Heart Rhythm 9, 134–142 (2012), ISSN 15475271

    Article  PubMed  Google Scholar 

  26. Varro, A., Balati, B., Iost, N., Takacs, J., Virag, L., Lathrop, D.A., Csaba, L., Talosi, L., Papp, J.G.: The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J. Physiol. 523, 67–81 (2000), ISSN 00223751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rocchetti, M., Besana, A., Gurrola, G.B., Possani, L.D., Zaza, A.: Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential. J. Physiol. 534, 721–732 (2001), ISSN 00223751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horvath, B., Banyasz, T., Jian, Z., Hegyi, B., Kistamas, K., Nanasi, P.P., Izu, L.T., Chen-Izu, Y.: Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations. J. Mol. Cell. Cardiol. 64, 59–68 (2013), ISSN 00222828

    Article  CAS  PubMed  Google Scholar 

  29. Marder, E., Taylor, A.L.: Multiple models to capture the variability in biological neurons and networks. Nat. Neurosci. 14, 133–138 (2011), ISSN 10976256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faber, G.M., Silva, J., Livshitz, L., Rudy, Y.: Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys. J. 92, 1522–1543 (2007), ISSN 15420086

    Article  CAS  PubMed  Google Scholar 

  31. Pasek, M., Simurda, J., Orchard, C.H., Christe, G.: A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system. Prog. Biophys. Mol. Biol. 96, 258–280 (2008), ISSN 00796107

    Article  PubMed  Google Scholar 

  32. Litovsky, S.H., Antzelevitch, C.: Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res. 62, 116–126 (1988), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  33. Liu, D.W., Gintant, G.A., Antzelevitch, C.: Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ. Res. 72, 671–687 (1993), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  34. Liu, D.W., Antzelevitch, C.: Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ. Res. 76, 351–365 (1995), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  35. Banyasz, T., Fulop, L., Magyar, J., Szentandrassy, N., Varro, A., Nanasi, P.P.: Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovasc. Res. 58, 66–75 (2003), ISSN 00086363

    Article  CAS  PubMed  Google Scholar 

  36. Fulop, L., Banyasz, T., Magyar, J., Szentandrassy, N., Varro, A., Nanasi, P.P.: Reopening of L-type calcium channels in human ventricular myocytes during applied epicardial action potentials. Acta Physiol. Scand. 180, 39–47 (2004), ISSN 00016772

    Article  CAS  PubMed  Google Scholar 

  37. Pogwizd, S.M.: Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits. Circulation 92, 1034–1048 (1995), ISSN 00097322

    Article  CAS  PubMed  Google Scholar 

  38. Pogwizd, S.M., Schlotthauer, K., Li, L., Yuan, W., Bers, D.M.: Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  39. Nattel, S., Maguy, A., Le Bouter, S., Yeh, Y.-H.: Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol. Rev. 87, 425–456 (2007), ISSN 00319333

    Article  CAS  PubMed  Google Scholar 

  40. Szabó, A., Szentandrássy, N., Birinyi, P., Horváth, B., Szabó, G., Bányász, T., Márton, I., Nánási, P.P., Magyar, J.: Effects of articaine on action potential characteristics and the underlying ion currents in canine ventricular myocytes. Br. J. Anaesth. 99, 726–733 (2007), ISSN 00070912

    Article  PubMed  Google Scholar 

  41. Szabó, A., Szentandrássy, N., Birinyi, P., Horváth, B., Szabó, G., Bányász, T., Márton, I., Magyar, J., Nánási, P.P.: Effects of ropivacaine on action potential configuration and ion currents in isolated canine ventricular cardiomyocytes. Anesthesiology 108, 693–702 (2008), ISSN 00033022

    Article  PubMed  Google Scholar 

  42. Rocchetti, M., Freli, V., Perego, V., Altomare, C., Mostacciuolo, G., Zaza, A.: Rate dependency of β-adrenergic modulation of repolarizing currents in the guinea-pig ventricle. J. Physiol. 574, 183–193 (2006), ISSN 00223751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dobrzynski, H., Janvier, N.C., Leach, R., Findlay, J.B.C., Boyett, M.R.: Effects of ACh and adenosine mediated by Kir3.1 and Kir3.4 on ferret ventricular cells. Am. J. Physiol. Heart Circul. Physiol. 283, H615–H630 (2002), ISSN 00029513

    Article  CAS  Google Scholar 

  44. Chorvatova, A., Snowdon, R., Hart, G., Hussain, M.: Effects of pressure overload-induced hypertrophy on TTX-sensitive inward currents in guinea pig left ventricle. Mol. Cell. Biochem. 261, 217–226 (2004), ISSN 03008177

    Article  CAS  PubMed  Google Scholar 

  45. Yuill, K.H., Convery, M.K., Dooley, P.C., Doggrell, S.A., Hancox, J.C.: Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes. Br. J. Pharmacol. 130, 1753–1766 (2000), ISSN 00071188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajamani, S., El-Bizri, N., Shryock, J.C., Makielski, J.C., Belardinelli, L.: Use-dependent block of cardiac late Na+ current by ranolazine. Heart Rhythm 6, 1625–1631 (2009), ISSN 15475271

    Article  PubMed  PubMed Central  Google Scholar 

  47. Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.Q., El-Bizri, N., Hirakawa, R., Karpinski, S., Li, C.H., Hu, L., Li, X.J., Crumb, W., Wu, L., Koltun, D., Zablocki, J., Yao, L., Dhalla, A.K., Rajamani, S., Shryock, J.C.: A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J. Pharmacol. Exp. Ther. 344, 23–32 (2013), ISSN 00223565

    Article  CAS  PubMed  Google Scholar 

  48. Horiba, M., Muto, T., Ueda, N., Opthof, T., Miwa, K., Hojo, M., Lee, J.K., Kamiya, K., Kodama, I., Yasui, K.: T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers. Life Sci. 82, 554–560 (2008), ISSN 00243205

    Article  CAS  PubMed  Google Scholar 

  49. Birinyi, P., Acsai, K., Banyasz, T., Toth, A., Horvath, B., Virag, L., Szentandrassy, N., Magyar, J., Varro, A., Fulop, F., Nanasi, P.P.: Effects of SEA0400 and KB-R7943 on Na+/Ca2+ exchange current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 372, 63–70 (2005), ISSN 00281298

    Article  CAS  PubMed  Google Scholar 

  50. Ozdemir, S., Bito, V., Holemans, P., Vinet, L., Mercadier, J.J., Varro, A., Sipido, K.R.: Pharmacological inhibition of Na/Ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block. Circ. Res. 102, 1398–1405 (2008), ISSN 00097330

    Article  CAS  PubMed  Google Scholar 

  51. Banyasz, T., Magyar, J., Szentandrassy, N., Horvath, B., Birinyi, P., Szentmiklosi, J., Nanasi, P.P.: Action potential clamp fingerprints of K+ currents in canine cardiomyocytes: their role in ventricular repolarization. Acta Physiol. (Oxf) 190, 189–198 (2007), ISSN 17481708

    Article  CAS  Google Scholar 

  52. Patel, S.P., Campbell, D.L.: Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J. Physiol. 569, 7–39 (2005), ISSN 00223751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gogelein, H., Bruggemann, A., Gerlach, U., Brendel, J., Busch, A.E.: Inhibition of IKs channels by HMR 1556. Naunyn Schmiedebergs Arch. Pharmacol. 362, 480–488 (2000), ISSN 00281298

    Article  CAS  PubMed  Google Scholar 

  54. Thomas, G.P., Gerlach, U., Antzelevitch, C.: HMR 1556, a potent and selective blocker of slowly activating delayed rectifier potassium current. J. Cardiovasc. Pharmacol. 41, 140–147 (2003), ISSN 01602446

    Article  CAS  PubMed  Google Scholar 

  55. Yamada, M., Ohta, K., Niwa, A., Tsujino, N., Nakada, T., Hirose, M.: Contribution of L-type Ca2+ channels to early afterdepolarizations induced by IKr and IKs channel suppression in guinea pig ventricular myocytes. J. Membr. Biol. 222, 151–166 (2008), ISSN 00222631

    Article  CAS  PubMed  Google Scholar 

  56. Banyasz, T., Lozinskiy, I., Payne, C.E., Edelmann, S., Norton, B., Chen, B., Chen-Izu, Y., Izu, L.T., Balke, C.W.: Transformation of adult rat cardiac myocytes in primary culture. Exp. Physiol. 93, 370–382 (2008), ISSN 09580670

    Article  PubMed  Google Scholar 

  57. Özgen, N., Dun, W., Sosunov, E.A., Anyukhovsky, E.P., Hirose, M., Duffy, H.S., Boyden, P.A., Rosen, M.R.: Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc. Res. 75, 758–769 (2007), ISSN 00086363

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xu, Y., Tuteja, D., Zhang, Z., Xu, D., Zhang, Y., Rodriguez, J., Nie, L., Tuxson, H.R., Young, J.N., Glatter, K.A., Vázquez, A.E., Yamoah, E.N., Chiamvimonvat, N.: Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278, 49085–49094 (2003), ISSN 00219258

    Article  CAS  PubMed  Google Scholar 

  59. Gwanyanya, A., Macianskiene, R., Bito, V., Sipido, K.R., Vereecke, J., Mubagwa, K.: Inhibition of the calcium-activated chloride current in cardiac ventricular myocytes by N-(p-amylcinnamoyl)anthranilic acid (ACA). Biochem. Biophys. Res. Commun. 402, 531–536 (2010), ISSN 0006291X

    Article  CAS  PubMed  Google Scholar 

  60. Váczi, K., Hegyi, B., Ruzsnavszky, F., Kistamás, K., Horváth, B., Bányász, T., Nánási, P.P., Szentandrássy, N., Magyar, J.: 9-Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential. Naunyn Schmiedebergs Arch. Pharmacol. 388, 87–100 (2015), ISSN 00281298

    Article  PubMed  Google Scholar 

  61. Greenwood, I.A., Leblanc, N.: Overlapping pharmacology of Ca2+-activated Cl and K+ channels. Trends Pharmacol. Sci. 28, 1–5 (2007), ISSN 01656147

    Article  CAS  PubMed  Google Scholar 

  62. Saleh, S.N., Angermann, J.E., Sones, W.R., Leblanc, N., Greenwood, I.A.: Stimulation of Ca2+-gated Cl currents by the calcium-dependent K+ channel modulators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2 H-benzimidazol-2-one] and isopimaric acid. J. Pharmacol. Exp. Ther. 321, 10751084 (2007), ISSN 00223565

    Article  Google Scholar 

  63. Borg, J.J., Hancox, J.C., Zhang, H., Spencer, C.I., Li, H., Kozlowski, R.Z.: Differential pharmacology of the cardiac anionic background current I(AB). Eur. J. Pharmacol. 569, 163–170 (2007), ISSN 00142999

    Article  CAS  PubMed  Google Scholar 

  64. Etter, A., Cully, D.F., Liu, K.K., Reiss, B., Vassilatis, D.K., Schaeffer, J.M., Arena, J.P.: Picrotoxin blockade of invertebrate glutamate-gated chloride channels: subunit dependence and evidence for binding within the pore. J. Neurochem. 72, 318–326 (1999), ISSN 00223042

    CAS  PubMed  Google Scholar 

  65. Huang, L., Keyser, B.M., Tagmose, T.M., Hansen, J.B., Taylor, J.T., Zhuang, H., Zhang, M., Ragsdale, D.S., Li, M.: NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J. Pharmacol. Exp. Ther. 309, 193–199 (2004), ISSN 00223565

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka, H., Komikado, C., Shimada, H., Takeda, K., Namekata, I., Kawanishi, T., Shigenobu, K.: The R(-)-enantiomer of efonidipine blocks T-type but not L-type calcium current in guinea pig ventricular myocardium. J. Pharmacol. Sci. 96, 499–501 (2004), ISSN 13478613

    Article  CAS  PubMed  Google Scholar 

  67. Bébarová, M.: Advances in patch clamp technique: towards higher quality and quantity. Gen. Physiol. Biophys. 31, 131–140 (2012), ISSN 02315882

    Article  PubMed  Google Scholar 

  68. Szentandrássy, N., Nagy, D., Ruzsnavszky, F., Harmati, G., Bányász, T., Magyar, J., Szentmiklósi, A.J., Nánási, P.P.: Powerful technique to test selectivity of agents acting on cardiac ion channels: the action potential voltage-clamp. Curr. Med. Chem. 18, 3737–3756 (2011), ISSN 09298673

    Article  PubMed  Google Scholar 

  69. Szentandrássy, N., Farkas, V., Bárándi, L., Hegyi, B., Ruzsnavszky, F., Horváth, B., Bányász, T., Magyar, J., Márton, I., Nánási, P.P.: Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells. Br. J. Pharmacol. 167, 599–611 (2012), ISSN 00071188

    Article  PubMed  PubMed Central  Google Scholar 

  70. Altomare, C., Bartolucci, C., Sala, L., Bernardi, J., Mostacciuolo, G., Rocchetti, M., Severi, S., Zaza, A.: IKr impact on repolarization and its variability assessed by dynamic clamp. Circ. Arrhythm. Electrophysiol. 8, 1265–1275 (2015), ISSN 19413149

    Article  PubMed  Google Scholar 

  71. Marangoni, S., Di Resta, C., Rocchetti, M., Barile, L., Rizzetto, R., Summa, A., Severi, S., Sommariva, E., Pappone, C., Ferrari, M., Benedetti, S., Zaza, A.: A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovasc. Res. 91, 606–616 (2011), ISSN 00086363

    Article  CAS  PubMed  Google Scholar 

  72. Bett, G.C., Kaplan, A.D., Lis, A., Cimato, T.R., Tzanakakis, E.S., Zhou, Q., Morales, M.J., Rasmusson, R.L.: Electronic “expression” of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells. Heart Rhythm 10, 1903–1910 (2013), ISSN 15475271

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Chen-Izu Ph.D. .

Editor information

Editors and Affiliations

Appendices

Problems

  1. 2.1.

    How is the cell’s action potential shaped by the inward currents and the outward currents?

  2. 2.2.

    What are the advantages of using AP-clamp and ‘Onion-Peeling’ technique, instead of conventional voltage-clamp, to record ionic currents?

  3. 2.3.

    Does Ca2+ transient during the action potential cycle affect ionic currents and the action potential? How to preserve the Ca2+ cycling during action potential?

  4. 2.4.

    What are the basic requirements for performing successful AP-clamp experiments?

Solutions

  1. 2.1

    The inward currents provide the Depolarization and the outward currents provide the Repolarization; these opposing currents counterbalance to shape the cell’s action.

  2. 2.2

    AP-clamp recording provides a different type of data from conventional voltage clamp: (a) the ionic currents are directly recorded during AP with Ca2+ cycling in a physiological milieu, mimicking in vivo condition; (b) the unprecedented ability to measure multiple currents in the same cell allows deciphering their relationships in the same cell, which is necessary for studying how multiple currents interact and integrate in the single cell to shape APs.

  3. 2.3
    1. 1.

      Not adding any exogenous Ca2+ buffer;

    2. 2.

      Using the cell’s own steady-state AP as the voltage-clamp command waveform;

    3. 3.

      Using internal and external solutions having physiological ionic composition;

    4. 4.

      Using physiological stimulation frequency and body temperature.

  4. 2.4
    1. 1.

      High-quality isolated single cells that can reach steady-state AP;

    2. 2.

      Using the internal and external solutions with physiological ionic composition, pH, and osmolarity;

    3. 3.

      Making the whole-cell seal with low access resistance (<5 MΩ) and seal condition kept constant throughout the entire experiment;

    4. 4.

      Using highly specific channel blockers to obtain drug-sensitive current.

Further Study

  • The recent advances in patch-clamp techniques and their application in cardiac electrophysiology are summarized by Bébarová [67].

  • How AP‐clamp can be used to test the selectivity of drugs acting on cardiac ion channels are reviewed by Szentandrássy et al. [68].

  • AP-clamp studies can reveal the exact frequency-dependent properties of ionic currents under AP [69].

  • Dynamic clamp can be used to assess ionic current properties during action potentials with beat-to-beat variability [70].

  • Dynamic clamp can be used to study the consequences of cardiac ion channel mutations in causing inherited arrhythmias [22, 71].

  • Dynamic clamp used in the field of cardiac stem cell research [72].

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Chen-Izu, Y., Izu, L.T., Hegyi, B., Bányász, T. (2017). Recording of Ionic Currents Under Physiological Conditions: Action Potential-Clamp and ‘Onion-Peeling’ Techniques. In: Jue, T. (eds) Modern Tools of Biophysics. Handbook of Modern Biophysics, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6713-1_2

Download citation

Publish with us

Policies and ethics