Advertisement

Recording of Ionic Currents Under Physiological Conditions: Action Potential-Clamp and ‘Onion-Peeling’ Techniques

  • Ye Chen-Izu
  • Leighton T. Izu
  • Bence Hegyi
  • Tamás Bányász
Chapter
Part of the Handbook of Modern Biophysics book series (HBBT, volume 5)

Abstract

Upon stimulation, excitable cells generate a transient change in the membrane potential called Action Potential (AP). The AP is governed by numerous ionic currents that flow in or out of the cell membrane. The goal of cellular electrophysiology is to understand the role of individual ionic currents and the interplay between currents in determining the profile and time course of AP. A critically important question of the field is how the ionic currents behave individually and interact collectively during the AP cycle of an excitable cell? To answer this question we need to know the dynamic behavior of ionic currents during AP and how these currents work in concert to determine the cell’s membrane potential at every moment.

Keywords

Ionic Current Pipette Solution Compensation Current Voltage Command Dynamic Clamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L.-H., Yang, M., Chen, P.-S., Restrepo, J.G., Karma, A., Garfinkel, A., Qu, Z., Weiss, J.N.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94, 392–410 (2008), ISSN 00063495CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Silva, J.R., Pan, H., Wu, D., Nekouzadeh, A., Decker, K.F., Cui, J., Baker, N.A., Sept, D., Rudy, Y.: A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc. Natl. Acad. Sci. U. S. A. 106, 11102–11106 (2009), ISSN 1091-6490CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Decker, K.F., Heijman, J., Silva, J.R., Hund, T.J., Rudy, Y.: Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium. Am. J. Physiol. Heart Circ. Physiol. 296, H1017–H1026 (2009), ISSN 03636135CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Doerr, T., Denger, R., Trautwein, W.: Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflügers Arch. 413, 599–603 (1989), ISSN 00316768CrossRefPubMedGoogle Scholar
  6. 6.
    Starzak, M.E., Starzak, R.J.: An action potential clamp to probe the effectiveness of space clamp in axons. IEEE Trans. Biomed. Eng. BME-25, 201–204 (1978), ISSN 00189294CrossRefGoogle Scholar
  7. 7.
    Bezanilla, F., Rojas, E., Taylor, R.E.: Sodium and potassium conductance changes during a membrane action potential. J. Physiol. 211, 729–751 (1970), ISSN 00223751CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bastian, J., Nakajima, S.: Action potential in the transverse tubules and its role in the activation of skeletal muscle. J. Gen. Physiol. 63, 257–278 (1974), ISSN 15407748CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nakajima, S., Bastian, J.: Double sucrose-gap method applied to single muscle fiber of Xenopus laevis. J. Gen. Physiol. 63, 235–256 (1974), ISSN 15407748CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Starzak, M., Needle, M.: The action potential clamp as a test of space-clamp effectiveness—the Lettwin Analog Axon. IEEE Trans. Biomed. Eng. BME-30, 139–140 (1983), ISSN 00189294CrossRefGoogle Scholar
  11. 11.
    Fischmeister, R., DeFelice, L.J., Ayer Jr., R.K., Levi, R., DeHaan, R.L.: Channel currents during spontaneous action potentials in embryonic chick heart cells—the action potential patch clamp. Biophys. J. 46, 267–272 (1984), ISSN 00063495CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mazzanti, M., DeFelice, L.J.: Na channel kinetics during the spontaneous heart beat in embryonic chick ventricular cells. Biophys. J. 52, 95–100 (1987), ISSN 00063495CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jackson, M.B., Lecar, H., Brenneman, D.E., Fitzgerald, S., Nelson, P.G.: Electrical development in spinal cord cell culture. J. Neurosci. 2, 1052–1061 (1982), ISSN 15292401PubMedGoogle Scholar
  14. 14.
    Doerr, T., Denger, R., Doerr, A., Trautwein, W.: Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflügers Arch. 416, 230–237 (1990), ISSN 00316768CrossRefPubMedGoogle Scholar
  15. 15.
    de Haas, V., Vogel, W.: Sodium and potassium currents recorded during an action potential. Eur. Biophys. J. 17, 49–51 (1989), ISSN 01757571CrossRefPubMedGoogle Scholar
  16. 16.
    Bouchard, R.A., Clark, R.B., Giles, W.R.: Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes action potential voltage-clamp measurements. Circ. Res. 76, 790–801 (1995), ISSN 00097330CrossRefPubMedGoogle Scholar
  17. 17.
    Barra, P.F.A.: Ionic currents during the action potential in the molluscan neurone with the self-clamp technique. Comp. Biochem. Physiol. A Physiol. 113, 185–194 (1996), ISSN 03009629CrossRefGoogle Scholar
  18. 18.
    Thiel, G.: Dynamics of chloride and potassium currents during the action potential in Chara studied with action potential clamp. Eur. Biophys. J. 24, 85–92 (1995), ISSN 01757571CrossRefGoogle Scholar
  19. 19.
    Arreola, J., Dirksen, R.T., Shieh, R.C., Williford, D.J., Sheu, S.S.: Ca2+ current and Ca2+ transients under action potential clamp in guinea pig ventricular myocytes. Am. J. Physiol. 261, C393–C397 (1991), ISSN 00029513PubMedGoogle Scholar
  20. 20.
    Grantham, C.J., Cannell, M.B.: Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. Circ. Res. 79, 194–200 (1996), ISSN 00097330CrossRefPubMedGoogle Scholar
  21. 21.
    Puglisi, J.L., Yuan, W., Bassani, W.M., Bers, D.M.: Ca2+ influx through Ca2+ channels in rabbit ventricular myocytes during action potential clamp: influence of temperature. Circ. Res. 85, e7–e16 (1999), ISSN 00097330CrossRefPubMedGoogle Scholar
  22. 22.
    Bereczki, G., Zegers, J.G., Verkerk, A.O., Bhuiyan, Z.A., de Jonge, B., Veldkamp, M.W., Wilders, R., van Ginneken, A.C.G.: HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys. J. 88, 566–578 (2005), ISSN 00063495CrossRefGoogle Scholar
  23. 23.
    Wilders, R.: Dynamic clamp: a powerful tool in cardiac electrophysiology. J. Physiol. 576, 349–359 (2006), ISSN 00223751CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Banyasz, T., Horvath, B., Jiang, Z., Izu, L.T., Chen-Izu, Y.: Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp. J. Mol. Cell. Cardiol. 50, 578–581 (2011), ISSN 00222828CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Banyasz, T., Horvath, B., Jiang, Z., Izu, L.T., Chen-Izu, Y.: Profile of L-type Ca2+ current and Na+/Ca2+ exchange current during cardiac action potential in ventricular myocytes. Heart Rhythm 9, 134–142 (2012), ISSN 15475271CrossRefPubMedGoogle Scholar
  26. 26.
    Varro, A., Balati, B., Iost, N., Takacs, J., Virag, L., Lathrop, D.A., Csaba, L., Talosi, L., Papp, J.G.: The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J. Physiol. 523, 67–81 (2000), ISSN 00223751CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rocchetti, M., Besana, A., Gurrola, G.B., Possani, L.D., Zaza, A.: Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential. J. Physiol. 534, 721–732 (2001), ISSN 00223751CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Horvath, B., Banyasz, T., Jian, Z., Hegyi, B., Kistamas, K., Nanasi, P.P., Izu, L.T., Chen-Izu, Y.: Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations. J. Mol. Cell. Cardiol. 64, 59–68 (2013), ISSN 00222828CrossRefPubMedGoogle Scholar
  29. 29.
    Marder, E., Taylor, A.L.: Multiple models to capture the variability in biological neurons and networks. Nat. Neurosci. 14, 133–138 (2011), ISSN 10976256CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Faber, G.M., Silva, J., Livshitz, L., Rudy, Y.: Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys. J. 92, 1522–1543 (2007), ISSN 15420086CrossRefPubMedGoogle Scholar
  31. 31.
    Pasek, M., Simurda, J., Orchard, C.H., Christe, G.: A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system. Prog. Biophys. Mol. Biol. 96, 258–280 (2008), ISSN 00796107CrossRefPubMedGoogle Scholar
  32. 32.
    Litovsky, S.H., Antzelevitch, C.: Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res. 62, 116–126 (1988), ISSN 00097330CrossRefPubMedGoogle Scholar
  33. 33.
    Liu, D.W., Gintant, G.A., Antzelevitch, C.: Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ. Res. 72, 671–687 (1993), ISSN 00097330CrossRefPubMedGoogle Scholar
  34. 34.
    Liu, D.W., Antzelevitch, C.: Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ. Res. 76, 351–365 (1995), ISSN 00097330CrossRefPubMedGoogle Scholar
  35. 35.
    Banyasz, T., Fulop, L., Magyar, J., Szentandrassy, N., Varro, A., Nanasi, P.P.: Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovasc. Res. 58, 66–75 (2003), ISSN 00086363CrossRefPubMedGoogle Scholar
  36. 36.
    Fulop, L., Banyasz, T., Magyar, J., Szentandrassy, N., Varro, A., Nanasi, P.P.: Reopening of L-type calcium channels in human ventricular myocytes during applied epicardial action potentials. Acta Physiol. Scand. 180, 39–47 (2004), ISSN 00016772CrossRefPubMedGoogle Scholar
  37. 37.
    Pogwizd, S.M.: Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits. Circulation 92, 1034–1048 (1995), ISSN 00097322CrossRefPubMedGoogle Scholar
  38. 38.
    Pogwizd, S.M., Schlotthauer, K., Li, L., Yuan, W., Bers, D.M.: Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001), ISSN 00097330CrossRefPubMedGoogle Scholar
  39. 39.
    Nattel, S., Maguy, A., Le Bouter, S., Yeh, Y.-H.: Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol. Rev. 87, 425–456 (2007), ISSN 00319333CrossRefPubMedGoogle Scholar
  40. 40.
    Szabó, A., Szentandrássy, N., Birinyi, P., Horváth, B., Szabó, G., Bányász, T., Márton, I., Nánási, P.P., Magyar, J.: Effects of articaine on action potential characteristics and the underlying ion currents in canine ventricular myocytes. Br. J. Anaesth. 99, 726–733 (2007), ISSN 00070912CrossRefPubMedGoogle Scholar
  41. 41.
    Szabó, A., Szentandrássy, N., Birinyi, P., Horváth, B., Szabó, G., Bányász, T., Márton, I., Magyar, J., Nánási, P.P.: Effects of ropivacaine on action potential configuration and ion currents in isolated canine ventricular cardiomyocytes. Anesthesiology 108, 693–702 (2008), ISSN 00033022CrossRefPubMedGoogle Scholar
  42. 42.
    Rocchetti, M., Freli, V., Perego, V., Altomare, C., Mostacciuolo, G., Zaza, A.: Rate dependency of β-adrenergic modulation of repolarizing currents in the guinea-pig ventricle. J. Physiol. 574, 183–193 (2006), ISSN 00223751CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dobrzynski, H., Janvier, N.C., Leach, R., Findlay, J.B.C., Boyett, M.R.: Effects of ACh and adenosine mediated by Kir3.1 and Kir3.4 on ferret ventricular cells. Am. J. Physiol. Heart Circul. Physiol. 283, H615–H630 (2002), ISSN 00029513CrossRefGoogle Scholar
  44. 44.
    Chorvatova, A., Snowdon, R., Hart, G., Hussain, M.: Effects of pressure overload-induced hypertrophy on TTX-sensitive inward currents in guinea pig left ventricle. Mol. Cell. Biochem. 261, 217–226 (2004), ISSN 03008177CrossRefPubMedGoogle Scholar
  45. 45.
    Yuill, K.H., Convery, M.K., Dooley, P.C., Doggrell, S.A., Hancox, J.C.: Effects of BDF 9198 on action potentials and ionic currents from guinea-pig isolated ventricular myocytes. Br. J. Pharmacol. 130, 1753–1766 (2000), ISSN 00071188CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rajamani, S., El-Bizri, N., Shryock, J.C., Makielski, J.C., Belardinelli, L.: Use-dependent block of cardiac late Na+ current by ranolazine. Heart Rhythm 6, 1625–1631 (2009), ISSN 15475271CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.Q., El-Bizri, N., Hirakawa, R., Karpinski, S., Li, C.H., Hu, L., Li, X.J., Crumb, W., Wu, L., Koltun, D., Zablocki, J., Yao, L., Dhalla, A.K., Rajamani, S., Shryock, J.C.: A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J. Pharmacol. Exp. Ther. 344, 23–32 (2013), ISSN 00223565CrossRefPubMedGoogle Scholar
  48. 48.
    Horiba, M., Muto, T., Ueda, N., Opthof, T., Miwa, K., Hojo, M., Lee, J.K., Kamiya, K., Kodama, I., Yasui, K.: T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers. Life Sci. 82, 554–560 (2008), ISSN 00243205CrossRefPubMedGoogle Scholar
  49. 49.
    Birinyi, P., Acsai, K., Banyasz, T., Toth, A., Horvath, B., Virag, L., Szentandrassy, N., Magyar, J., Varro, A., Fulop, F., Nanasi, P.P.: Effects of SEA0400 and KB-R7943 on Na+/Ca2+ exchange current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 372, 63–70 (2005), ISSN 00281298CrossRefPubMedGoogle Scholar
  50. 50.
    Ozdemir, S., Bito, V., Holemans, P., Vinet, L., Mercadier, J.J., Varro, A., Sipido, K.R.: Pharmacological inhibition of Na/Ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block. Circ. Res. 102, 1398–1405 (2008), ISSN 00097330CrossRefPubMedGoogle Scholar
  51. 51.
    Banyasz, T., Magyar, J., Szentandrassy, N., Horvath, B., Birinyi, P., Szentmiklosi, J., Nanasi, P.P.: Action potential clamp fingerprints of K+ currents in canine cardiomyocytes: their role in ventricular repolarization. Acta Physiol. (Oxf) 190, 189–198 (2007), ISSN 17481708CrossRefGoogle Scholar
  52. 52.
    Patel, S.P., Campbell, D.L.: Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J. Physiol. 569, 7–39 (2005), ISSN 00223751CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gogelein, H., Bruggemann, A., Gerlach, U., Brendel, J., Busch, A.E.: Inhibition of IKs channels by HMR 1556. Naunyn Schmiedebergs Arch. Pharmacol. 362, 480–488 (2000), ISSN 00281298CrossRefPubMedGoogle Scholar
  54. 54.
    Thomas, G.P., Gerlach, U., Antzelevitch, C.: HMR 1556, a potent and selective blocker of slowly activating delayed rectifier potassium current. J. Cardiovasc. Pharmacol. 41, 140–147 (2003), ISSN 01602446CrossRefPubMedGoogle Scholar
  55. 55.
    Yamada, M., Ohta, K., Niwa, A., Tsujino, N., Nakada, T., Hirose, M.: Contribution of L-type Ca2+ channels to early afterdepolarizations induced by IKr and IKs channel suppression in guinea pig ventricular myocytes. J. Membr. Biol. 222, 151–166 (2008), ISSN 00222631CrossRefPubMedGoogle Scholar
  56. 56.
    Banyasz, T., Lozinskiy, I., Payne, C.E., Edelmann, S., Norton, B., Chen, B., Chen-Izu, Y., Izu, L.T., Balke, C.W.: Transformation of adult rat cardiac myocytes in primary culture. Exp. Physiol. 93, 370–382 (2008), ISSN 09580670CrossRefPubMedGoogle Scholar
  57. 57.
    Özgen, N., Dun, W., Sosunov, E.A., Anyukhovsky, E.P., Hirose, M., Duffy, H.S., Boyden, P.A., Rosen, M.R.: Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc. Res. 75, 758–769 (2007), ISSN 00086363CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Xu, Y., Tuteja, D., Zhang, Z., Xu, D., Zhang, Y., Rodriguez, J., Nie, L., Tuxson, H.R., Young, J.N., Glatter, K.A., Vázquez, A.E., Yamoah, E.N., Chiamvimonvat, N.: Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278, 49085–49094 (2003), ISSN 00219258CrossRefPubMedGoogle Scholar
  59. 59.
    Gwanyanya, A., Macianskiene, R., Bito, V., Sipido, K.R., Vereecke, J., Mubagwa, K.: Inhibition of the calcium-activated chloride current in cardiac ventricular myocytes by N-(p-amylcinnamoyl)anthranilic acid (ACA). Biochem. Biophys. Res. Commun. 402, 531–536 (2010), ISSN 0006291XCrossRefPubMedGoogle Scholar
  60. 60.
    Váczi, K., Hegyi, B., Ruzsnavszky, F., Kistamás, K., Horváth, B., Bányász, T., Nánási, P.P., Szentandrássy, N., Magyar, J.: 9-Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential. Naunyn Schmiedebergs Arch. Pharmacol. 388, 87–100 (2015), ISSN 00281298CrossRefPubMedGoogle Scholar
  61. 61.
    Greenwood, I.A., Leblanc, N.: Overlapping pharmacology of Ca2+-activated Cl and K+ channels. Trends Pharmacol. Sci. 28, 1–5 (2007), ISSN 01656147CrossRefPubMedGoogle Scholar
  62. 62.
    Saleh, S.N., Angermann, J.E., Sones, W.R., Leblanc, N., Greenwood, I.A.: Stimulation of Ca2+-gated Cl currents by the calcium-dependent K+ channel modulators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2 H-benzimidazol-2-one] and isopimaric acid. J. Pharmacol. Exp. Ther. 321, 10751084 (2007), ISSN 00223565CrossRefGoogle Scholar
  63. 63.
    Borg, J.J., Hancox, J.C., Zhang, H., Spencer, C.I., Li, H., Kozlowski, R.Z.: Differential pharmacology of the cardiac anionic background current I(AB). Eur. J. Pharmacol. 569, 163–170 (2007), ISSN 00142999CrossRefPubMedGoogle Scholar
  64. 64.
    Etter, A., Cully, D.F., Liu, K.K., Reiss, B., Vassilatis, D.K., Schaeffer, J.M., Arena, J.P.: Picrotoxin blockade of invertebrate glutamate-gated chloride channels: subunit dependence and evidence for binding within the pore. J. Neurochem. 72, 318–326 (1999), ISSN 00223042PubMedGoogle Scholar
  65. 65.
    Huang, L., Keyser, B.M., Tagmose, T.M., Hansen, J.B., Taylor, J.T., Zhuang, H., Zhang, M., Ragsdale, D.S., Li, M.: NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J. Pharmacol. Exp. Ther. 309, 193–199 (2004), ISSN 00223565CrossRefPubMedGoogle Scholar
  66. 66.
    Tanaka, H., Komikado, C., Shimada, H., Takeda, K., Namekata, I., Kawanishi, T., Shigenobu, K.: The R(-)-enantiomer of efonidipine blocks T-type but not L-type calcium current in guinea pig ventricular myocardium. J. Pharmacol. Sci. 96, 499–501 (2004), ISSN 13478613CrossRefPubMedGoogle Scholar
  67. 67.
    Bébarová, M.: Advances in patch clamp technique: towards higher quality and quantity. Gen. Physiol. Biophys. 31, 131–140 (2012), ISSN 02315882CrossRefPubMedGoogle Scholar
  68. 68.
    Szentandrássy, N., Nagy, D., Ruzsnavszky, F., Harmati, G., Bányász, T., Magyar, J., Szentmiklósi, A.J., Nánási, P.P.: Powerful technique to test selectivity of agents acting on cardiac ion channels: the action potential voltage-clamp. Curr. Med. Chem. 18, 3737–3756 (2011), ISSN 09298673CrossRefPubMedGoogle Scholar
  69. 69.
    Szentandrássy, N., Farkas, V., Bárándi, L., Hegyi, B., Ruzsnavszky, F., Horváth, B., Bányász, T., Magyar, J., Márton, I., Nánási, P.P.: Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells. Br. J. Pharmacol. 167, 599–611 (2012), ISSN 00071188CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Altomare, C., Bartolucci, C., Sala, L., Bernardi, J., Mostacciuolo, G., Rocchetti, M., Severi, S., Zaza, A.: IKr impact on repolarization and its variability assessed by dynamic clamp. Circ. Arrhythm. Electrophysiol. 8, 1265–1275 (2015), ISSN 19413149CrossRefPubMedGoogle Scholar
  71. 71.
    Marangoni, S., Di Resta, C., Rocchetti, M., Barile, L., Rizzetto, R., Summa, A., Severi, S., Sommariva, E., Pappone, C., Ferrari, M., Benedetti, S., Zaza, A.: A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovasc. Res. 91, 606–616 (2011), ISSN 00086363CrossRefPubMedGoogle Scholar
  72. 72.
    Bett, G.C., Kaplan, A.D., Lis, A., Cimato, T.R., Tzanakakis, E.S., Zhou, Q., Morales, M.J., Rasmusson, R.L.: Electronic “expression” of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells. Heart Rhythm 10, 1903–1910 (2013), ISSN 15475271CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Ye Chen-Izu
    • 1
  • Leighton T. Izu
    • 2
  • Bence Hegyi
    • 2
  • Tamás Bányász
    • 1
    • 3
  1. 1.Departments of Pharmacology, Biomedical Engineering, Internal Medicine/CardiologyUniversity of California, DavisDavisUSA
  2. 2.Department of PharmacologyUniversity of California, DavisDavisUSA
  3. 3.Department of PhysiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations