Skip to main content

Factors Accelerating Ozone Depletion

  • Chapter
  • First Online:
Ozone Hole

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 1166 Accesses

Abstract

Just as carbon dioxide is inexorably associated with global warming, chlorofluorocarbons (CFCs) are implicated in ozone hole. But CFCs are not the only ozone-destroying chemicals in the environment; there are three other classes of substances as well (Fig. 3.1).

A combination of factors leads to chemical reactions that destroy stratospheric ozone and create the ‘ozone hole’. This chapter dwells upon these factors and also describes the evolution of theories that have helped us understand the mechanism of ozone hole formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96(408), 320–325.

    Article  Google Scholar 

  2. Hickman, J. E., Tully, K. L., Groffman, P. M., Diru, W., & Palm, C. A. (2015). A potential tipping point in tropical agriculture: Avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya. Journal of Geophysical Research, G: Biogeosciences, 120(5), 938–951.

    CAS  Google Scholar 

  3. Arévalo-Martínez, D. L., Kock, A., Löscher, C. R., Schmitz, R. A., & Bange, H. W. (2015). Massive nitrous oxide emissions from the tropical South Pacific Ocean. Nature Geoscience, 8(7), 530–533.

    Article  Google Scholar 

  4. Babbin, A. R., Bianchi, D., Jayakumar, A., & Ward, B. B. (2015). Rapid nitrous oxide cycling in the suboxic ocean. Science, 348(6239), 1127–1129.

    Article  CAS  Google Scholar 

  5. Hossaini, R., Chipperfield, M. P., Montzka, S. A., Rap, A., Dhomse, S., & Feng, W. (2015). Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone. Nature Geoscience, 8(3), 186–190.

    Article  CAS  Google Scholar 

  6. McCormick, M. P., Steele, H. M., Hamill, P., Chu, W. P., & Swissler, T. J. (1982). Polar stratospheric cloud sightings by SAM II. Journal of Atmospheric Science, 3, 1387–1397.

    Article  Google Scholar 

  7. Crutzen, P., & Arnold, F. (1986). Nitric acid could formation in the cold Antarctic stratosphere: A major cause for the springtime “ozone hole”. Nature, 324(6098), 651–655.

    Article  CAS  Google Scholar 

  8. Solomon, S., Garcia, R. R., Rowland, F. S., & Wuebbles, D. J. (1986). On the depletion of Antarctic ozone. Nature, 321, 755–758.

    Article  CAS  Google Scholar 

  9. Molina, M. J., & Rowland, F. S. (1974). Stratospheric sink for chlorofluoro methanes: Chlorine atom catalysed destruction of ozone. Nature, 249(5460), 810–812.

    Article  CAS  Google Scholar 

  10. Bauer, E. (1979). catalog of perturbing influences on stratospheric ozone, 1955–1975. Journal of Geophysical Research, 84, 6929–6940.

    Article  CAS  Google Scholar 

  11. Champman, S. (1930). A theory of upper atmospheric ozone. Memoirs of the Royal Meteorological Society, 3(26), 103–125.

    Google Scholar 

  12. Chang, J. S., Duewer, W. H., & Wuebbles, D. J. (1979). The atmospheric nuclear tests of the 1950’s and 1960’s: A possible test of ozone depletion theories. Journal of Geophysical Research, 84, 1755–1765.

    Article  CAS  Google Scholar 

  13. Dutsch, H. U. (1970). Atmospheric ozone—A short review. Journal of Geophysical Research, 75, 1707–1712.

    Article  Google Scholar 

  14. Heidt, L. E., Lueb, R., Pollock, W., & Ehhalt, D. H. (1975). Stratospheric profiles of CCl3F and CCl2F2. Geophysical Research Letters, 2, 445–447.

    Article  CAS  Google Scholar 

  15. Johnston, H. S. (1971). Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science, 173, 517–522.

    Article  CAS  Google Scholar 

  16. NAS (National Academy of Sciences). (1975). Environmental impact of stratospheric flight, biological and climatic effects of aircraft emissions in the stratosphere. Washington, DC: Climatic Impact Committee.

    Google Scholar 

  17. Rowland, F. S., & Molina, M. J. (1975). Chlorofluoro methanes in the environment. Reviews of Geophysics and Space Physics, 13, 1–35.

    Article  CAS  Google Scholar 

  18. Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210.

    Article  CAS  Google Scholar 

  19. Molina, L. T., & Molina, M. J. (1987). Production of Cl2O2 from the self-reaction of the ClO radical. Journal of Physical Chemistry, 91, 433–436.

    Article  CAS  Google Scholar 

  20. Molina, M. J., Tso, T. L., Molina, L. T., & Wang, F. C. Y. (1987). Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride and ice. Release of active chlorine. Science, 238, 1253–1260.

    Article  CAS  Google Scholar 

  21. Rowland, F. S. (1990). Stratospheric ozone depletion by chlorofluorocarbons. Ambio, 19, 281–292.

    Google Scholar 

  22. Rowland, F. S. (1991). Stratospheric ozone depletion. Annual Review of Physical Chemistry, 42, 731–768.

    Article  CAS  Google Scholar 

  23. Rowland, F. S. (2006). Strotospheric ozone depletion. Philosophical Transactions of the Royal Society B, 361, 769–790.

    Article  CAS  Google Scholar 

  24. Lovelock, J. E., Maggs, R. J., & Wade, R. J. (1973). Halogenated hydrocarbons in and over the Atlantic. Nature, 241, 194–196.

    Article  CAS  Google Scholar 

  25. Schmeltekopf, A. L., Goldan, P. D., Henderson, W. R., Harrop, W. J., Thompson, T. L., Fehsenfeld, F. C., et al. (1975). Measurements of stratospheric CFCl3, CF2Cl2 and N2O. Geophysical Research Letters, 2, 393–396.

    Article  CAS  Google Scholar 

  26. Sato H, Rowland FS (1984). International Meeting on Current Issues in Our Understanding of the Stratosphere and the Future of the Ozone Layer, Feldafing, West Germany, 11–16 June 1984.

    Google Scholar 

  27. Tolbert, M. A., Rossi, M. J., Malhotra, R., & Golden, D. M. (1987). Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures. Science, 238, 1258–1260.

    Article  CAS  Google Scholar 

  28. WMO (World Meteorological Organization) Report No. 47, (2003). Scientific assessment of ozone depletion: 2002. Global research and monitoring project.

    Google Scholar 

  29. Hegglin, M. I., Fahey, D. W., McFarland, M., Montzka, S. A., & Nash, E. R. (2014). Twenty questions and answers about the ozone layer: 2014 update (79 pp.). World Meteorological Organization, UNEP, NOAA, NASA, and European Commission.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Abbasi, S.A., Abbasi, T. (2017). Factors Accelerating Ozone Depletion. In: Ozone Hole. SpringerBriefs in Environmental Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6710-0_3

Download citation

Publish with us

Policies and ethics