Skip to main content

Applications of Non-coding RNA in the Molecular Pathology of Cancer

  • Chapter
  • First Online:
Molecular Pathology in Cancer Research

Abstract

Recent genomic-scale technologies have led to the discovery that large numbers of transcripts occur outside the boundaries of protein-coding genes. Whilst the volume of transcription is not usually debated, heated arguments have erupted over the biological function of these molecules, and even whether the designated term of “non-coding RNAs” is accurate. This classification uncertainty has not stymied the research aimed at discovering new diagnostic, prognostic, or predictive biomarkers of cancer, and non-coding RNAs (both large and small) have been demonstrated beyond reasonable doubt to be associated with every aspect of tumor biology. In this chapter, we summarize currently known associations of ncRNAs to cancer, and the promising candidates for predictive, prognostic, and diagnostic applications for management of the disease. Although there are several major challenges to overcome before the enormous body of research can be properly deployed in a clinical context, the potential for highly specific and sensitive assays is certainly exciting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  2. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29(3):288–299

    Article  CAS  PubMed  Google Scholar 

  3. Djebali S et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harrow J et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22(9):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gascoigne DK et al (2012) Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes. Bioinformatics 28(23):3042–3050

    Article  CAS  PubMed  Google Scholar 

  6. Dinger ME et al (2008) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4(11):e1000176

    Google Scholar 

  7. Chooniedass-Kothari S et al (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566(1-3):43–47

    Article  CAS  PubMed  Google Scholar 

  8. Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  CAS  PubMed  Google Scholar 

  9. Jenny A et al (2006) A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133(15):2827–2833

    Article  CAS  PubMed  Google Scholar 

  10. Kloc M et al (2005) Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132(15):3445–3457

    Article  CAS  PubMed  Google Scholar 

  11. Lanz RB et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J et al (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94(4):515–524

    Article  CAS  PubMed  Google Scholar 

  13. Doolittle WF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A 110(14):5294–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ebisuya M et al (2008) Ripples from neighbouring transcription. Nat Cell Biol 10(9):1106–1113

    Article  CAS  PubMed  Google Scholar 

  15. Eddy SR (2012) The C-value paradox, junk DNA and ENCODE. Curr Biol 22(21):R898–R899

    Article  CAS  PubMed  Google Scholar 

  16. Graur D et al (2013) On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5(3):578–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Guttman M, Rinn J (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim T-K et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niu D-K, Jiang L (2013) Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun 430(4):1340–1343

    Article  CAS  PubMed  Google Scholar 

  20. Nobrega M et al (2004) Megabase deletions of gene deserts result in viable mice. Nature 431(October):988–993

    Article  CAS  PubMed  Google Scholar 

  21. De Santa F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8(5):e1000384

    Google Scholar 

  22. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14(2):103–105

    Article  CAS  PubMed  Google Scholar 

  23. Hänggi P (2002) Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. Chemphyschem 3(3):285–290

    Article  PubMed  Google Scholar 

  24. Ozbudak EM et al (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73

    Article  CAS  PubMed  Google Scholar 

  25. Baker M (2011) Long noncoding RNAs: the search for function. Nat Methods 8(5):379–383

    Article  CAS  Google Scholar 

  26. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  27. Pasquinelli AE et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89

    Google Scholar 

  28. Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  29. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cloonan N et al (2011) MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 12(12):R126

    Google Scholar 

  31. Humphreys DT et al (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102(47):16961–16966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maroney PA et al (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13(12):1102–1107

    Article  CAS  PubMed  Google Scholar 

  33. Mathonnet G et al (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317(5845):1764–1767

    Article  CAS  PubMed  Google Scholar 

  34. Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13(12):1108–1114

    Article  CAS  PubMed  Google Scholar 

  35. Petersen CP et al (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542

    Article  CAS  PubMed  Google Scholar 

  36. Pillai RS et al (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309(5740):1573–1576

    Article  CAS  PubMed  Google Scholar 

  37. Liu J et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giraldez AJ et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79

    Article  CAS  PubMed  Google Scholar 

  39. Valencia-Sanchez MA et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  40. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo H et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cui Q et al (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2:46

    Article  PubMed  PubMed Central  Google Scholar 

  43. Clancy JL et al (2011) mRNA isoform diversity can obscure detection of miRNA-mediated control of translation. RNA 17(6):1025–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    CAS  PubMed  Google Scholar 

  45. Berezikov E et al (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Okamura K et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheloufi S et al (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465(7298):584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cifuentes D et al (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328(5986):1694–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang J-S et al (2010) Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A 107(34):15163–15168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matranga C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620

    Article  CAS  PubMed  Google Scholar 

  51. Griffiths-Jones S et al (2011) MicroRNA evolution by arm switching. EMBO Rep 12(2):172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Humphreys DT et al (2012) Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function. PLoS One 7(2):e30933

    Google Scholar 

  53. Calin GA et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bandi N et al (2009) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 69(13):5553–5559

    Article  CAS  PubMed  Google Scholar 

  55. Linsley PS et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27(6):2240–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Q et al (2008) miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36(16):5391–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calin GA et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He L et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cloonan N et al (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9(8):R127

    Google Scholar 

  61. Matsubara H et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26(41):6099–6105

    Article  CAS  PubMed  Google Scholar 

  62. Yan H et al (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mu P et al (2009) Genetic dissection of the miR-17 ~ 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23(24):2806–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Olive V et al (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ventura A et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132(5):875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Calin GA, Sevignani C et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tagawa H, Seto M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19(11):2013–2016

    Article  CAS  PubMed  Google Scholar 

  68. Zhang L et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 103(24):9136–9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  72. Xie B et al (2013) miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29(5):638–644

    Article  CAS  PubMed  Google Scholar 

  73. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  74. Chen X et al (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392

    Article  CAS  PubMed  Google Scholar 

  75. Lin T et al (2009) MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol 181(3):1372–1380

    Article  CAS  PubMed  Google Scholar 

  76. Noguchi S et al (2011) MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett 307(2):211–220

    Article  CAS  PubMed  Google Scholar 

  77. Noguchi S et al (2013) Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett 328(2):353–361

    Article  CAS  PubMed  Google Scholar 

  78. Ng EKO et al (2014) MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumour Biol 35:2591–2598

    Article  CAS  PubMed  Google Scholar 

  79. Liu L et al (2012) miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 5(3):753–760

    CAS  PubMed  Google Scholar 

  80. Borralho PM et al (2011) miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS One 6(8):e23787

    Google Scholar 

  81. Ng EKO et al (2009) MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 101(4):699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pichler M et al (2012) Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer 106(11):1826–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qian X et al (2013) MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle 12(9):1385–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Slaby O et al (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72(5-6):397–402

    Article  CAS  PubMed  Google Scholar 

  85. Takaoka Y et al (2012) Forced expression of miR-143 represses ERK5/c-Myc and p68/p72 signaling in concert with miR-145 in gut tumors of Apc(Min) mice. PLoS One 7(8):e42137

    Google Scholar 

  86. Ni Y et al (2013) MicroRNA-143 functions as a tumor suppressor in human esophageal squamous cell carcinoma. Gene 517(2):197–204

    Article  CAS  PubMed  Google Scholar 

  87. Zhao S et al (2013) miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. Cancer Lett 333(2):253–260

    Article  CAS  PubMed  Google Scholar 

  88. Chen H-C et al (2009) MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 100(6):1002–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ouyang L et al (2013) A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol 30(1):340

    Google Scholar 

  90. Zhang H et al (2010) microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep 24:1363–1369

    CAS  PubMed  Google Scholar 

  91. Clapé C et al (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4(10):e7542

    Google Scholar 

  92. Kojima S et al (2014) The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet 59:78–87

    Article  CAS  PubMed  Google Scholar 

  93. Xu B et al (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350(1-2):207–213

    Article  CAS  PubMed  Google Scholar 

  94. Yoshino H et al (2013) The tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci 104(12):1567–1574

    Article  CAS  PubMed  Google Scholar 

  95. Cloonan N et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5(7):613–619

    Article  CAS  PubMed  Google Scholar 

  96. Xia H et al (2009) MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 380(2):205–210

    Article  CAS  PubMed  Google Scholar 

  97. Talotta F et al (2009) An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28(1):73–84

    Article  CAS  PubMed  Google Scholar 

  98. Volinia S et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20(5):589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi W et al (2011) MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res 71(8):2926–2937

    Article  CAS  PubMed  Google Scholar 

  100. Coates PJ et al (2001) Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res 265(2):262–273

    Article  CAS  PubMed  Google Scholar 

  101. Liu T et al (2009) MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 273(2):233–242

    Article  CAS  PubMed  Google Scholar 

  102. Li X et al (2013) c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem 288(25):18121–18133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Z et al (2011) miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet 204(9):486–491

    Article  CAS  PubMed  Google Scholar 

  104. Zhao X, Yang L, Hu J (2011) Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res 30(1):55

    Google Scholar 

  105. Park YT et al (2013) MicroRNAs overexpressed in ovarian ALDH1-positive cells are associated with chemoresistance. J Ovarian Res 6(1):18

    Google Scholar 

  106. Rodriguez A et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zonari E et al (2013) A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood 122(2):243–252

    Article  CAS  PubMed  Google Scholar 

  108. Ueda R et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A 106(26):10746–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tsukerman P et al (2012) MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res 72(21):5463–5472

    Article  CAS  PubMed  Google Scholar 

  110. Ciafrè SA et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    Article  PubMed  CAS  Google Scholar 

  111. Silber J et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    Google Scholar 

  112. Bloomston M et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908

    Article  CAS  PubMed  Google Scholar 

  113. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  CAS  PubMed  Google Scholar 

  114. Calin GA, Liu C-G et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101(32):11755–11760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Garzon R et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105(10):3945–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hwang MS et al (2013) miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One 8(6):e66502

    Google Scholar 

  117. Shah MY, Calin GA (2011) MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med 3(8):56

    Google Scholar 

  118. Stinson S et al (2011) TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal 4(177):ra41

    Google Scholar 

  119. Puerta-Gil P et al (2012) miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. Am J Pathol 180(5):1808–1815

    Article  CAS  PubMed  Google Scholar 

  120. Amankwah EK et al (2013) miR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases. Asian J Androl 15(2):226–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fuse M et al (2012) Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet 57(11):691–699

    Article  CAS  PubMed  Google Scholar 

  122. Sun T et al (2012) The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 72(10):1093–1103

    Article  CAS  PubMed  Google Scholar 

  123. Li N et al (2012) Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett 586(6):722–728

    Article  CAS  PubMed  Google Scholar 

  124. Tsunoda T et al (2011) Oncogenic KRAS regulates miR-200c and miR-221/222 in a 3D-specific manner in colorectal cancer cells. Anticancer Res 31(7):2453–2459

    CAS  PubMed  Google Scholar 

  125. Zhang Y et al (2011) High-mobility group A1 proteins enhance the expression of the oncogenic miR-222 in lung cancer cells. Mol Cell Biochem 357(1-2):363–371

    Article  CAS  PubMed  Google Scholar 

  126. Sun C et al (2013) miR-222 is upregulated in epithelial ovarian cancer and promotes cell proliferation by downregulating P27(kip1.). Oncol Lett 6(2):507–512

    PubMed  PubMed Central  Google Scholar 

  127. Lee C et al (2013) Elevated expression of tumor miR-222 in pancreatic cancer is associated with Ki67 and poor prognosis. Med Oncol 30(4):700

    Google Scholar 

  128. Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8(3):167–179

    Article  CAS  PubMed  Google Scholar 

  129. Mitomo S et al (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99(2):280–286

    Article  CAS  PubMed  Google Scholar 

  130. Wang W et al (2012) MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 33(5):1113–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu X et al (2009) MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 286(2):217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kasiappan R et al (2012) 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J Biol Chem 287(49):41297–41309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Watanabe A et al (2011) The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 25(8):1324–1334

    Google Scholar 

  134. Stampfer MR et al (2003) Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines. Oncogene 22(34):5238–5251

    Article  CAS  PubMed  Google Scholar 

  135. Voorhoeve PM et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    Article  CAS  PubMed  Google Scholar 

  136. O’Connell RM et al (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104(5):1604–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Tili E et al (2011) Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci U S A 108(12):4908–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fabbri M, Paone A, Calore F (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109(31):E2110–E2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yang CH et al (2010) IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res 70(20):8108–8116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182(8):4994–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moschos SA et al (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8:240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Sheedy FJ et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11(2):141–147

    Article  CAS  PubMed  Google Scholar 

  143. Weigelt B, Peterse JL, & van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5(8):591–602

    Google Scholar 

  144. Asangani IA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136

    Article  CAS  PubMed  Google Scholar 

  145. Zhu S et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359

    Article  CAS  PubMed  Google Scholar 

  146. Valastyan S et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bao W et al (2011) HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 141(6):2076–2087.e6

    Google Scholar 

  148. Li R-Y et al (2013) MiR-139 inhibits Mcl-1 expression and potentiates TMZ-induced apoptosis in glioma. CNS Neurosci Ther 19(7):477–483

    Article  CAS  PubMed  Google Scholar 

  149. Wong CC-L et al (2011) The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 140(1):322–331

    Article  CAS  PubMed  Google Scholar 

  150. Mascaux C et al (2009) Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J 33(2):352–359

    Article  CAS  PubMed  Google Scholar 

  151. Krishnan K, Steptoe AL, Martin HC, Wani S et al (2013) MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 19(2):230–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Herbert SP, Stainier DYR (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Suárez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104(4):442–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Yamakuchi M et al (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107(14):6334–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dews M et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38(9):1060–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bonauer A et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  CAS  PubMed  Google Scholar 

  157. Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR et al (2013) miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA 19(12):1767–1780

    Google Scholar 

  158. Lal A et al (2009) miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16(5):492–498

    Google Scholar 

  159. Crosby ME et al (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69(3):1221–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lima RT et al (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47(2):163–174

    Article  CAS  PubMed  Google Scholar 

  161. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  162. Eichner LJ et al (2010) miR-378(∗) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab 12(4):352–361

    Article  CAS  PubMed  Google Scholar 

  163. Sun Y et al (2012) miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep 28(4):1346–1352

    CAS  PubMed  Google Scholar 

  164. Chi SW et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Doebele C et al (2010) Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115(23):4944–4950

    Article  CAS  PubMed  Google Scholar 

  166. Hafner M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ivanovska I et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28(7):2167–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Guo H et al (2013) The regulation of Toll-like receptor 2 by miR-143 suppresses the invasion and migration of a subset of human colorectal carcinoma cells. Mol Cancer 12(1):77

    Google Scholar 

  169. Cho WCS, Chow ASC, Au JSK (2009) Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 45(12):2197–2206

    Article  CAS  PubMed  Google Scholar 

  170. Myatt SS et al (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70(1):367–377

    Article  CAS  PubMed  Google Scholar 

  171. Sarver AL et al (2009) Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 9:401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Schaefer A et al (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126(5):1166–1176

    CAS  PubMed  Google Scholar 

  173. Segura MF et al (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106(6):1814–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kong W-Q et al (2012) MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J 279(7):1252–1260

    Article  CAS  PubMed  Google Scholar 

  175. Sun Y et al (2010) Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun 396(2):501–507

    Article  CAS  PubMed  Google Scholar 

  176. Zhang L et al (2011) microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. Int J Mol Med 28(3):381–388

    PubMed  Google Scholar 

  177. Gottardo F et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25(5):387–392

    Article  CAS  PubMed  Google Scholar 

  178. Greenberg E et al (2011) Regulation of cancer aggressive features in melanoma cells by microRNAs. PLoS One 6(4):e18936

    Google Scholar 

  179. Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  CAS  PubMed  Google Scholar 

  180. Koga Y et al (2010) MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila) 3(11):1435–1442

    Article  Google Scholar 

  181. Levati L, Alvino E (2009) Altered expression of selected microRNAs in melanoma: antiproliferative and proapoptotic activity of miRNA-155. Int J Oncol 35:393–400

    Google Scholar 

  182. Li H et al (2011) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126(3):565–575

    Article  CAS  PubMed  Google Scholar 

  183. Luo H et al (2012) Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma. Biochem J 442(2):311–321

    Article  CAS  PubMed  Google Scholar 

  184. Ohuchida K et al (2012) MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol 19(7):2394–2402

    Article  PubMed  Google Scholar 

  185. Tsujiura M et al (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 102(7):1174–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yan H-J et al (2012) miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig Dis Sci 57(12):3160–3167

    Article  CAS  PubMed  Google Scholar 

  187. Yang F et al (2010) miR-17-5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology 51(5):1614–1623

    Article  CAS  PubMed  Google Scholar 

  188. Yu J et al (2010) MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther 10(8):748–757

    Article  CAS  PubMed  Google Scholar 

  189. Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26(21):8191–8201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wei Q et al (2012) MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 64(8):697–704

    Article  CAS  PubMed  Google Scholar 

  191. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  192. Devi GR (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther 13(9):819–829

    Article  CAS  PubMed  Google Scholar 

  193. Izquierdo M (2005) Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 12(3):217–227

    Article  CAS  PubMed  Google Scholar 

  194. Soutschek J et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178

    Article  CAS  PubMed  Google Scholar 

  195. Watanabe T et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543

    Article  CAS  PubMed  Google Scholar 

  196. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  197. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17(4):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122(1):9–12

    Article  CAS  PubMed  Google Scholar 

  199. Shukla R et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153(1):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Brennecke J et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103

    Article  CAS  PubMed  Google Scholar 

  201. Yan Z et al (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 39(15):6596–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Siomi MC et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258

    Article  CAS  PubMed  Google Scholar 

  203. Cheng J et al (2011) piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta 412(17–18):1621–1625

    Article  CAS  PubMed  Google Scholar 

  204. Huang G et al (2013) Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 15(7):563–568

    Article  CAS  PubMed  Google Scholar 

  205. Cheng J et al (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315(1):12–17

    Article  CAS  PubMed  Google Scholar 

  206. Mei Y, Clark D, Mao L (2013) Novel dimensions of piRNAs in cancer. Cancer Lett 336(1):46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Darzacq X et al (2002) Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21(11):2746–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kishore S et al (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19(7):1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Darzacq X, Kiss T (2000) Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5′, 3′-terminal stem structure. Mol Cell Biol 20(13):4522–4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kiss T, Fayet-Lebaron E, Jády BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37(5):597–606

    Article  PubMed  Google Scholar 

  211. Williams GT, Farzaneh F (2012) Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 12(2):84–88

    CAS  PubMed  Google Scholar 

  212. Dong X-Y et al (2009) Implication of snoRNA U50 in human breast cancer. J Genet Genomics 36(8):447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dong X-Y et al (2008) SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17(7):1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Liao J et al (2010) Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 9:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Mei Y-P et al (2012) Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 31(22):2794–2804

    Article  CAS  PubMed  Google Scholar 

  216. Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8(3):209–220

    Article  CAS  PubMed  Google Scholar 

  217. Jankowska A et al (2008) Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells. Mol Cancer 7:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Gridasova A, Henry R (2005) The p53 tumor suppressor protein represses human snRNA gene transcription by RNA polymerases II and III independently of sequence-specific DNA binding. Mol Cell Biol 25(8):3247–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Christov CP et al (2006) Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol 26(18):6993–7004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chen X et al (2013) An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell 153(1):166–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Christov CP, Trivier E, Krude T (2008) Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br J Cancer 98(5):981–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kickhoefer VA et al (2003) Identification of conserved vault RNA expression elements and a non-expressed mouse vault RNA gene. Gene 309(2):65–70

    Article  CAS  PubMed  Google Scholar 

  223. Van Zon A et al (2003) The vault complex. Cell Mol Life Sci 60(9):1828–1837

    Article  PubMed  CAS  Google Scholar 

  224. Gopinath SCB, Wadhwa R, Kumar PKR (2010) Expression of noncoding vault RNA in human malignant cells and its importance in mitoxantrone resistance. Mol Cancer Res 8(11):1536–1546

    Article  CAS  PubMed  Google Scholar 

  225. Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(June):1484–1488

    Article  CAS  PubMed  Google Scholar 

  226. Taft RJ et al (2009) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41(5):572–578

    Article  CAS  PubMed  Google Scholar 

  227. Preker P, Nielsen J, Kammler S (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322:1851–1854

    Article  CAS  PubMed  Google Scholar 

  228. Seila AC et al (2008) Divergent transcription from active promoters. Science 322(5909):1849–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Taft RJ et al (2010) Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol 17(8):1030–1034

    Article  CAS  PubMed  Google Scholar 

  230. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17(5):556–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Tano K et al (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett 584(22):4575–4580

    Article  CAS  PubMed  Google Scholar 

  233. Wang J et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38(16):5366–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ota A et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095

    Article  CAS  PubMed  Google Scholar 

  236. Prensner JR et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nguyen VT et al (2001) 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414(6861):322–325

    Article  CAS  PubMed  Google Scholar 

  238. Zhao Y, Guo Q, Chen J, Hu J, Shuwei Wang YS (2014) Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep 31(1):358–364

    CAS  PubMed  Google Scholar 

  239. Kotake Y et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962

    Article  CAS  PubMed  Google Scholar 

  240. Carpenter S et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341(6147):789–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Feng J et al (1995) The RNA component of human telomerase. Science 269(5228):1236–1241

    Article  CAS  PubMed  Google Scholar 

  242. Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38(17):5797–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Rapicavoli NA et al (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife 2:e00762

    Google Scholar 

  244. Rayet B, Gélinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947

    Article  CAS  PubMed  Google Scholar 

  245. Ji P et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041

    Article  PubMed  CAS  Google Scholar 

  246. Guo F et al (2010) Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin 42(3):224–229

    Article  CAS  PubMed  Google Scholar 

  247. Emadi-Andani E et al (2014) Association of HOTAIR expression in gastric carcinoma with invasion and distant metastasis. Adv Biomed Res 3:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Yuan J et al (2014) A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25(5):666–681

    Article  CAS  PubMed  Google Scholar 

  249. Yuan S-X et al (2012) Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology 56(6):2231–2241

    Article  CAS  PubMed  Google Scholar 

  250. Rossignol F, Vaché C, Clottes E (2002) Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299(1–2):135–140

    Article  CAS  PubMed  Google Scholar 

  251. Prensner JR et al (2014) PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 74(6):1651–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Petrovics G et al (2004) Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 23(2):605–611

    Article  CAS  PubMed  Google Scholar 

  253. Pickard MR, Mourtada-Maarabouni M, Williams GT (2013) Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta 1832(10):1613–1623

    Article  CAS  PubMed  Google Scholar 

  254. DeOcesano-Pereira C et al (2014) Long non-coding RNA INXS is a critical mediator of BCL-XS induced apoptosis. Nucleic Acids Res 42(13):8343–8355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Hung T et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kino T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8

    Google Scholar 

  257. Li Z et al (2014) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105(8):951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Blank A, Dekker CA (1981) Ribonucleases of human serum, urine, cerebrospinal fluid, and leukocytes. Activity staining following electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Biochemistry 20(8):2261–2267

    Article  CAS  PubMed  Google Scholar 

  259. Häusler SFM et al (2010) Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer 103(5):693–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  262. Arroyo JD et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Vickers KC et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  265. Weber JA et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Xie Y et al (2010) Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 67(2):170–176

    Article  PubMed  Google Scholar 

  267. Link A et al (2010) Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 19(7):1766–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Van Gils MPMQ et al (2007) The time-resolved fluorescence-based PCA3 test on urinary sediments after digital rectal examination; a Dutch multicenter validation of the diagnostic performance. Clin Cancer Res 13(3):939–943

    Article  PubMed  Google Scholar 

  269. Welch JS et al (2011) Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 305(15):1577–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Jones SJ et al (2010) Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol 11(8):R82

    Google Scholar 

  271. Hudson TJ et al (2010) International network of cancer genome projects. Nature 464(7291):993–998

    Article  CAS  PubMed  Google Scholar 

  272. Balch CM et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27(36):6199–6206

    Article  PubMed  PubMed Central  Google Scholar 

  273. Berry DA et al (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353(17):1784–1792

    Article  CAS  PubMed  Google Scholar 

  274. Naucler P et al (2007) Human papillomavirus and Papanicolaou tests to screen for cervical cancer. N Engl J Med 357(16):1589–1597

    Article  CAS  PubMed  Google Scholar 

  275. Aberle D, Adams A, Berg C (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409

    Article  PubMed  Google Scholar 

  276. Mandel JJS et al (1993) Reducing mortality from colorectal cancer by screening for fecal occult blood. N Engl J Med 328(19):1365–1371

    Article  CAS  PubMed  Google Scholar 

  277. Nanda K et al (2000) Accuracy of the Papanicolaou Test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. Ann Intern Med 132(10):810–819

    Article  CAS  PubMed  Google Scholar 

  278. Jacobs I, Bast RC (1989) The CA 125 tumour-associated antigen: a review of the literature. Hum Reprod 4(1):1–12

    CAS  PubMed  Google Scholar 

  279. Shitrit D et al (2005) Diagnostic value of CYFRA 21-1, CEA, CA 19-9, CA 15-3, and CA 125 assays in pleural effusions: analysis of 116 cases and review of the literature. Oncologist 10(7):501–507

    Article  CAS  PubMed  Google Scholar 

  280. Jemal A et al (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19(8):1893–1907

    Article  PubMed  Google Scholar 

  281. Xing L et al (2010) Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol 23(8):1157–1164

    Article  CAS  PubMed  Google Scholar 

  282. Liu H et al (2012) Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett 316(2):196–203

    Article  CAS  PubMed  Google Scholar 

  283. Hessels D, Schalken JA (2009) The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 6(5):255–261

    Article  CAS  PubMed  Google Scholar 

  284. Hessels D et al (2003) DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44(1):8–16

    Article  CAS  PubMed  Google Scholar 

  285. De Kok JB et al (2002) DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 62(9):2695–2698

    CAS  PubMed  Google Scholar 

  286. Narod S et al (1993) Increasing incidence of breast cancer in family with BRCA1 mutation. Lancet 341(8852):1101–1102

    Article  CAS  PubMed  Google Scholar 

  287. Wooster R et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265(5181):2088–2090

    Article  CAS  PubMed  Google Scholar 

  288. Easton D, Ford D, Peto J (1993) Inherited susceptibility to breast cancer. Cancer Surv 18:95–113

    CAS  PubMed  Google Scholar 

  289. Moran A et al (2012) Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 11(2):235–242

    Article  CAS  PubMed  Google Scholar 

  290. Lerman C, Shields AE (2004) Genetic testing for cancer susceptibility: the promise and the pitfalls. Nat Rev Cancer 4(3):235–241

    Article  CAS  PubMed  Google Scholar 

  291. Moskwa P et al (2011) miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41(2):210–220

    Article  CAS  PubMed  Google Scholar 

  292. Aaltonen K et al (2008) Familial breast cancers without mutations in BRCA1 or BRCA2 have low cyclin E and high cyclin D1 in contrast to cancers in BRCA mutation carriers. Clin Cancer Res 14(7):1976–1983

    Article  CAS  PubMed  Google Scholar 

  293. Pentheroudakis G, Pavlidis N (2006) Perspectives for targeted therapies in cancer of unknown primary site. Cancer Treat Rev 32(8):637–644

    Article  CAS  PubMed  Google Scholar 

  294. Pentheroudakis G, Golfinopoulos V, Pavlidis N (2007) Switching benchmarks in cancer of unknown primary: from autopsy to microarray. Eur J Cancer 43(14):2026–2036

    Article  PubMed  Google Scholar 

  295. Rosenwald S et al (2010) Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin. Mod Pathol 23(6):814–823

    Article  CAS  PubMed  Google Scholar 

  296. Meiri E et al (2012) A second-generation microRNA-based assay for diagnosing tumor tissue origin. Oncologist 17(6):801–812

    Article  PubMed  PubMed Central  Google Scholar 

  297. Viale G (2012) The current state of breast cancer classification. Ann Oncol 23 Suppl 10:x207–x210

    Google Scholar 

  298. Bishop JA et al (2010) Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 16(2):610–619

    Article  CAS  PubMed  Google Scholar 

  299. Gilad S et al (2012) Classification of the four main types of lung cancer using a microRNA-based diagnostic assay. J Mol Diagn 14(5):510–517

    Article  CAS  PubMed  Google Scholar 

  300. Spector Y et al (2013) Development and validation of a microRNA-based diagnostic assay for classification of renal cell carcinomas. Mol Oncol 7(3):732–738

    Article  CAS  PubMed  Google Scholar 

  301. Benjamin H et al (2010) A diagnostic assay based on microRNA expression accurately identifies malignant pleural mesothelioma. J Mol Diagn 12(6):771–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Rosenfeld N et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469

    Article  CAS  PubMed  Google Scholar 

  303. Cancer T, Atlas G (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519–525

    Article  CAS  Google Scholar 

  304. Cancer T, Atlas G (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615

    Article  CAS  Google Scholar 

  305. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  306. Hudis CA (2007) Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51

    Article  CAS  PubMed  Google Scholar 

  307. The Clinical Lung Cancer Genome Project & Network Genomic Medicine (2013) A genomics-based classification of human lung tumors. Sci Transl Med 5(209):209ra153

    Google Scholar 

  308. Fecher LA et al (2007) Toward a molecular classification of melanoma. J Clin Oncol 25(12):1606–1620

    Article  CAS  PubMed  Google Scholar 

  309. Verhaak RGW et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Blenkiron C et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Volinia S et al (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci U S A 109(8):3024–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Lowery AJ et al (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 11(3):R27

    Google Scholar 

  313. Cascione L et al (2013) Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PLoS One 8(2):e55910

    Google Scholar 

  314. Spahn M et al (2010) Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127(2):394–403

    CAS  PubMed  Google Scholar 

  315. Patnaik SK et al (2010) Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 70(1):36–45

    Article  CAS  PubMed  Google Scholar 

  316. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  317. Leary RJ et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2(20):20ra14

    Google Scholar 

  318. McBride DJ et al (2010) Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 49(11):1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Hauptman N, Glavac D (2013) MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer. Radiol Oncol 47(4):311–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93(1):98–104

    Article  CAS  PubMed  Google Scholar 

  322. Begley CG, Ellis LM (2012) Raise standards for preclinical cancer research. Nature 483:531–533

    Article  CAS  PubMed  Google Scholar 

  323. Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10(9):712

    Google Scholar 

  324. Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  325. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  326. Su Z et al (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32(9)

    Google Scholar 

  327. Baechler EC et al (2004) Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun 5(5):347–353

    Article  CAS  PubMed  Google Scholar 

  328. Waddington C (1942) Canalization of development and the inheritance of acquired characters. Nature 150(3811):563–565

    Article  Google Scholar 

  329. Gygi SP et al (1999) Correlation between protein and mRNA abundance in yeast correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(Suppl):S20–S24

    Google Scholar 

  331. Li X et al (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137(2):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Kim Y-K et al (2012) Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 46(6):893–895

    Article  CAS  PubMed  Google Scholar 

  333. Bossuyt PM et al (2004) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Fam Pract 21(1):4–10

    Article  PubMed  Google Scholar 

  334. Ochodo EA, Bossuyt PM (2013) Reporting the accuracy of diagnostic tests: the STARD initiative 10 years on. Clin Chem 59(6):917–919

    Article  CAS  PubMed  Google Scholar 

  335. McShane LM et al (2005) REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat Clin Pract Oncol 2(8):416–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NC is supported by an Australian Research Council Future Fellowship (FT120100453) and the Cancer Council of Queensland (APP1063119). We would like to thank our colleagues, students, collaborators, and family for their patience and assistance during the preparation and writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Cloonan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Krishnan, K., Cloonan, N. (2016). Applications of Non-coding RNA in the Molecular Pathology of Cancer. In: Lakhani, S., Fox, S. (eds) Molecular Pathology in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6643-1_9

Download citation

Publish with us

Policies and ethics