Skip to main content

Part of the book series: Springer Series in Statistics ((SSS))

  • 2802 Accesses

Abstract

Many methods discussed in this book are motivated by research problems arising from various fields, including nutrition studies, cancer research and environmental studies. Methods and application of measurement error models are vast in the epidemiology literature. Although the book discusses some research in this field, the coverage is far from complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarin, T. and Wang, L. (2012). Instrumental variable approach to covariate measurement error in generalized linear models. Annals of the Institute of Statistical Mathematics, 64, 475–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Abdullah, M. B. (1995). Detection of influential observations in functional errors-in-variables model. Communications in Statistics – Theory and Methods, 24, 1585–1595.

    Article  MATH  Google Scholar 

  • Amemiya, Y. (1985). Instrumental variable estimator for the nonlinear errors-in-variables model. Journal of Econometrics, 28, 273–289.

    Article  MathSciNet  MATH  Google Scholar 

  • Amemiya, Y. (1990). Two-stage instrumental variable estimators for the nonlinear errors-in-variables model. Journal of Econometrics, 44, 311–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle, R. B., Bolfarine, H., and Gasco, L. (2002). Measurement error models with nonconstant covariance matrices. Journal of Multivariate Analysis, 82, 395–415.

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle, R. B., Ozan, S., Bolfarine, H., and Lachos, V. H. (2005). Skew normal measurement error models. Journal of Multivariate Analysis, 96, 265–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Babanezhad, M., Vansteelandt, S., and Goetghebeur, E. (2010). Comparison of causal effect estimators under exposure misclassification. Journal of Statistical Planning and Inference, 140, 1306–1319.

    Article  MathSciNet  MATH  Google Scholar 

  • Begg, M. D. and Lagakos, S. (1992). Effects of mismodeling on tests of association based on logistic regression models. The Annals of Statistics, 20, 1929–1952.

    Article  MathSciNet  MATH  Google Scholar 

  • Begg, M. D. and Lagakos, S. (1993). Loss in efficiency caused by omitting covariates and misspecifying exposure in logistic regression models. Journal of the American Statistical Association, 88, 166–170.

    Google Scholar 

  • Berry, S. M., Carroll, R. J., and Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, 97, 160–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Biemer, P. P., Groves, R. M., Lyberg, L. E., Mathiowetz, N. A., and Sudman, S. (1991). Measurement Error in Surveys. John Wiley & Sons, Inc., Hoboken, New Jersey.

    Google Scholar 

  • Black, D. A., Berger, M. C., and Scott, F. A. (2000). Bounding parameter estimates with nonclassical measurement error. Journal of the American Statistical Association, 95, 739–748.

    Article  Google Scholar 

  • Blakely, T., McKenzie, S., and Carter, K. (2013). Misclassification of the mediator matters when estimating indirect effects. Journal of Epidemiology & Community Health, 67, 458–466.

    Article  Google Scholar 

  • Bochud, M. and Rousson, V. (2010). Usefulness of Mendelian randomization in observational epidemiology. International Journal of Environmental Research and Public Health, 7, 711–728.

    Article  Google Scholar 

  • Boggs, P. T., Byrd, R. H., Rogers, J. E., and Schnabel, R. B. (1992). User’s reference guide for ODRPACK version 2.01 software for weighted orthogonal distance regression. Applied and Computational Mathematics Division. National Institute of Standards and Technology, Gaithersburg, MD 20899.

    Google Scholar 

  • Bollinger, C. R. (1996). Bounding mean regressions when a binary regressor is mismeasured. Journal of Econometrics, 73, 387–399.

    Article  MathSciNet  MATH  Google Scholar 

  • Brunner, J. and Austin, P. C. (2009). Inflation of Type I error rate in multiple regression when independent variables are measured with error. The Canadian Journal of Statistics, 37, 33–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Buonaccorsi, J. P. (1995). Prediction in the presence of measurement error: General discussion and an example predicting defoliation. Biometrics, 51, 1562–1569.

    Article  MATH  Google Scholar 

  • Buzas, J. S. and Stefanski, L. A. (1996a). Instrumental variable estimation in a probit measurement error model. Journal of Statistical Planning and Inference, 55, 47–62.

    Google Scholar 

  • Buzas, J. S. and Stefanski, L. A. (1996b). Instrumental variable estimation in generalized linear measurement error models. Journal of the American Statistical Association, 91, 999–1006.

    Google Scholar 

  • Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. Journal of the American Statistical Association, 83, 1184–1186.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R. J. and Hall, P. (2004). Low order approximations in deconvolution and regression with errors in variables. Journal of the Royal Statistical Society, Series B, 66, 31–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R. J. and Li, K.-C. (1992). Measurement error regression with unknown link: Dimension reduction and data visualization. Journal of the American Statistical Association, 87, 1040–1050.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R. J., Chen, X., and Hu, Y. (2010). Identification and estimation of nonlinear models using two samples with nonclassical measurement errors. Journal of Nonparametric Statistics, 22, 379–399. Rejoinder to discussion pages 419–423.

    Google Scholar 

  • Carroll, R. J., Delaigle, A., and Hall, P. (2007). Nonparametric regression estimation from data contaminated by a mixture of Berkson and classical errors. Journal of the Royal Statistical Society, Series B, 69, 859–878.

    Article  MathSciNet  Google Scholar 

  • Carroll, R. J., Delaigle, A., and Hall, P. (2009). Nonparametric prediction in measurement error models (with discussion). Journal of the American Statistical Association, 104, 993–1014.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R. J., Freedman, L., and Pee, D. (1997). Design aspects of calibration studies in nutrition, with analysis of missing data in linear measurement error models. Biometrics, 53, 1440–1457.

    Article  MATH  Google Scholar 

  • Carroll, R. J., Knickerbocker, R. K., and Wang, C. Y. (1995). Dimension reduction in a semiparametric regression model with errors in covariates. The Annals of Statistics, 23, 161–181.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric regression in the presence of measurement error. Biometrika, 86, 541–554.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, J. C., Roeder, K., and Wasserman, L. (1999). Flexible parametric measurement error models. Biometrics, 55, 44–54.

    Article  MATH  Google Scholar 

  • Carroll, R. J., Freedman, L. S., Kipnis, V., and Li, L. (1998). A new class of measurement error models, with applications to dietary data. The Canadian Journal of Statistics, 26, 467–477.

    Article  MATH  Google Scholar 

  • Carroll, R. J., Ruppert, D., Crainiceanu, C. M., Tosteson, T. D., and Karagas, M. R. (2004). Nonlinear and nonparametric regression and instrumental variables. Journal of the American Statistical Association, 99, 736–750.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models. 2nd ed., Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Carter, R. L. and Fuller, W. A. (1980). Instrumental variable estimation of the simple errors-in-variables model. Journal of the American Statistical Association, 75, 687–692.

    Article  MATH  Google Scholar 

  • Cheng, C.-L. and Tsai, C.-L. (2004). The invariance of some score tests in the linear model with classical measurement error. Journal of the American Statistical Association, 99, 805–809.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19, 15–18.

    MathSciNet  MATH  Google Scholar 

  • Cook, R. D. (1986). Assessment of local influence (with discussion). Journal of the Royal Statistical Society B, 48, 133–169.

    MathSciNet  MATH  Google Scholar 

  • Cook, R. D. (2007). Fisher lecture: Dimension reduction in regression. Statistical Science, 22, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models. Journal of the American Statistical Association, 89, 1314–1328.

    Article  MATH  Google Scholar 

  • Cui, H. and Chen, S. X. (2003). Empirical likelihood confidence region for parameters in the errors-in-variables models. Journal of Multivariate Analysis, 84, 101–115.

    Article  MathSciNet  MATH  Google Scholar 

  • de Castro, M. Galea, M., and Bolfarine, H. (2008). Hypothesis testing in an errors-in-variables model with heteroscedastic measurement errors. Statistics in Medicine, 27, 5217–5234.

    Google Scholar 

  • Delaigle, A. (2007). Nonparametric density estimation from data with a mixture of Berkson and classical errors. The Canadian Journal of Statistics, 35, 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle, A. (2014). Nonparametric kernel methods with errors-in-variables: Constructing estimators, computing them, and avoiding common mistakes. Australian & New Zealand Journal of Statistics, 56, 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle, A. and Gijbels, I. (2002). Estimation of integrated squared density derivatives from a contaminated sample. Journal of the Royal Statistical Society, Series B, 64, 869–886.

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle, A., Fan, J., and Carroll, R. J. (2009). A design-adaptive local polynomial estimator for the errors-in-variables problem. Journal of the American Statistical Association, 104, 348–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle, A., Hall, P., and Qiu, P. (2006). Nonparametric methods for solving the Berkson errors-in-variables problem. Journal of the Royal Statistical Society, Series B, 68, 201–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Díaz, I. and van der Laan, M. J. (2013). Sensitivity analysis for causal inference under unmeasured confounding and measurement error problems. The International Journal of Biostatistics, 9, 149–160.

    MathSciNet  Google Scholar 

  • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J. and Truong, Y. K. (1993). Nonparametric regression with errors in variables. The Annals of Statistics, 21, 1900–1925.

    Article  MathSciNet  MATH  Google Scholar 

  • Feldstein, M. (1974). Errors in variables: A consistent estimator with smaller MSE in finite samples. Journal of the American Statistical Association, 69, 990–996.

    Article  MATH  Google Scholar 

  • Freedman, L. S., Midthune, D., Carroll, R. J., and Kipnis, V. (2008). A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression. Statistics in Medicine, 27, 5195–5216.

    Article  MathSciNet  Google Scholar 

  • Fuller, W. A. (1987). Measurement Error Models. Wiley, New York.

    Book  MATH  Google Scholar 

  • Galea, M. and Giménez, P. (2010). Estimation and testing in elliptical functional measurement error models. Communications in Statistics – Theory and Methods, 39, 2031–2045.

    Article  MathSciNet  MATH  Google Scholar 

  • Galea, M., Bolgarine, H., and Vilcalabra, F. (2002). Influence diagnostics for the structural errors-in-variables model under the Student-t distribution. Journal of Applied Statistics, 29, 1191–1204.

    Article  MathSciNet  MATH  Google Scholar 

  • Ganse, R. A., Amemiya, Y., and Fuller, W. A. (1983). Prediction when both variables are subject to error, with application to earthquake magnitudes. Journal of the American Statistical Association, 78, 761–765.

    Article  Google Scholar 

  • Gimenez, P., Bolfarine, H., and Colosimo, E. A. (2000). Hypotheses testing for error-in-variables models. Annals of the Institute of Statistical Mathematics, 52, 698–711.

    Article  MathSciNet  MATH  Google Scholar 

  • Gimenez, P., Colosimo, E. A., and Bolfarine, H. (2000). Asymptotic relative efficiency of Wald tests in measurement error models. Communications in Statistics – Theory and Methods, 29, 549–564.

    Article  MathSciNet  MATH  Google Scholar 

  • Goetghebeur, E. and Vansteelandt, S. (2005). Structural mean models for compliance analysis in randomized clinical trials and the impact of errors on measures of exposure. Statistical Methods in Medical Research, 14, 397–415.

    Article  MathSciNet  MATH  Google Scholar 

  • Griliches, Z. and Hausman, J. A. (1986). Errors in variables in panel data. Journal of Econometrics, 31, 93–118.

    Article  MathSciNet  Google Scholar 

  • Gustafson, P. (2004). Measurement Error and Misclassification in Statistics and Epidemiology. Chapman & Hall/CRC, Boca Raton, Florida.

    MATH  Google Scholar 

  • Gustafson, P. (2007). Measurement error modelling with an approximate instrumental variable. Journal of the Royal Statistical Society, Series B, 69, 797–815.

    Article  MathSciNet  Google Scholar 

  • Hanfelt, J. J. and Liang, K. Y. (1997). Approximate likelihoods for generalized linear errors-in-variables models. Journal of the Royal Statistical Society, Series B, 59, 627–637.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, T. F. and Bartoszek, K. (2012). Interpreting the evolutionary regression: The interplay between observational and biological errors in phylogenetic comparative studies. Systematic Biology 61, 413–425.

    Article  Google Scholar 

  • Hardin, J. W., Schmiediche, H., and Carroll, R. J. (2003a). The regression-calibration method for fitting generalized linear models with additive measurement error. The Stata Journal, 3, 361–372.

    Google Scholar 

  • Hardin, J. W., Schmiediche, H., and Carroll, R. J. (2003b). The simulation extrapolation method for fitting generalized linear models with additive measurement error. The Stata Journal, 3, 373–385.

    Google Scholar 

  • Hausman, J. A., Newey, W. K., Ichimura, H., and Powell, J. L. (1991). Identification and estimation of polynomial errors-in-variables models. Journal of Econometrics, 50, 273–295.

    Article  MathSciNet  MATH  Google Scholar 

  • He, W., Xiong, J., and Yi, G. Y. (2012). SIMEX R package for accelerated failure time models with covariate measurement error. Journal of Statistical Software, 46, Code Snippet 1, 1–14.

    Google Scholar 

  • Hernán, M. A. and Cole, S. R. (2009). Invited commentary: Causal diagrams and measurement bias. American Journal of Epidemiology, 170, 959–962.

    Article  Google Scholar 

  • Hu, Y. (2006). Bounding parameters in a linear regression model with a mismeasured regressor using additional information. Journal of Econometrics, 133, 51–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, Y. and Schennach, S. M. (2008). Instrumental variable treatment of nonclassical measurement error models. Econometrika, 76, 195–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, X. (2009). An improved test of latent-variable model misspecification in structural measurement error models for group testing data. Statistics in Medicine, 28, 3316–3327.

    Article  MathSciNet  Google Scholar 

  • Huang, Z. (2011). Empirical likelihood for a partially linear single-index measurement error model with right-censored data. Communications in Statistics – Theory and Methods, 40, 1015–1029.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, X. and Zhang, H. (2013). Variable selection in linear measurement error models via penalized score functions. Journal of Statistical Planning and Inference, 143, 2101–2111.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, X., Stefanski, L. A., and Davidian, M. (2006). Latent-model robustness in structural measurement error models. Biometrika, 93, 53–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, L-S., Wang, H., and Cox, C. (2005). Assessing interaction effects in linear measurement error models. Applied Statistics, 54, 21–30.

    MathSciNet  MATH  Google Scholar 

  • Huwang, L. and Hwang, J. T. G. (2002). Prediction and confidence intervals for nonlinear measurement error models without identifiability information. Statistics & Probability Letters, 58, 355–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Imai, K. and Yamamoto, T. (2010). Causal inference with differential measurement error: Nonparametric identification and sensitivity analysis. American Journal of Political Science, 54, 543–560.

    Article  Google Scholar 

  • Jaccard, J. and Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117, 348–357.

    Article  Google Scholar 

  • Jackson, C. H. (2011). Multi-state models for panel data: The msm package for R. Journal of Statistical Software, 38, Issue 8, 1–28.

    Google Scholar 

  • Joreskog, K. G. and Yang, F. (1996). Nonlinear structural equation models: The Kenny–Judd model with interaction effects. In Advanced Structural Equation Modeling, Marcoulides, G. A. and Schumacker, R. E. (eds). Lawrence Erlbaum: Hillsadle, NJ, 57–88.

    Google Scholar 

  • Kelly, G. (1984). The influence function in the errors in variables problem. The Annals of Statistics, 12, 87–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Kenny, D. and Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201–210.

    Article  Google Scholar 

  • Kim, M. G. (2000). Outliers and influential observations in the structural errors-in-variables model. Journal of Applied Statistics, 27, 451–460.

    Article  MATH  Google Scholar 

  • Kim, M. Y. and Goldberg, J. D. (2001). The effects of outcome misclassification and measurement error on the design and analysis of therapeutic equivalence trials. Statistics in Medicine, 20, 2065–2078.

    Article  Google Scholar 

  • Klepper, S. (1988). Bounding the effects of measurement error in regressions involving dichotomous variables. Journal of Econometrics, 37, 343–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Klepper, S. and Leamer, E. E. (1984). Consistent sets of estimates for regressions with errors in all variables. Econometrica, 52, 163–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Koul, H. L. and Song, W. (2008). Regression model checking with Berkson measurement errors. Journal of Statistical Planning and Inference, 138, 1615–1628.

    Article  MathSciNet  MATH  Google Scholar 

  • Krasker, W. S. and Pratt, J. W. (1986). Bounding the effects of proxy variables on regression coefficients. Econometrica, 54, 641–655.

    Article  MathSciNet  MATH  Google Scholar 

  • Küchenhoff, H., Mwalili, S. M., and Lesaffre, E. (2006). A general method for dealing with misclassification in regression: The misclassification SIMEX. Biometrics, 62, 85–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Kukush, A., Markovsky, I., and Huffel, S. V. (2002). Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis. Computational Statistics and Data Analysis, 41, 3–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Lachos, V. H., Montenegro, L. C., and Bolfarine, H. (2008). Inference and local influence assessment in skew-normal null intercept measurement error model. Journal of Statistical Computation and Simulation, 78, 395–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Lachos, V. H., Garibay, V., Labra, F. V., and Aoki, R. (2009). A robust multivariate measurement error model with skew-normal/independent distributions and Bayesian MCMC implementation. Statistical Methodology, 6, 527–541.

    Article  MathSciNet  MATH  Google Scholar 

  • Lagakos, S. W. (1988). Effects of mismodelling and mismeasuring explanatory variables on tests of their association with a response variable. Statistics in Medicine, 7, 257–274.

    Article  Google Scholar 

  • Lederer, W. and Küchenhoff, H. (2006). A short introduction to the SIMEX and MCSIMEX. R News, 6(4), 26–31.

    Google Scholar 

  • Lee, A. H. and Zhao, Y. (1996). Assessing local influence in measurement error models. Biometrical Journal, 38, 829–841.

    Article  MATH  Google Scholar 

  • Lewbel, A. (1998). Semiparametric latent variable model estimation with endogenous or mismeasured regressors. Econometrica, 66, 105–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewbel, A. (2007). Estimation of average treatment effects with misclassification. Econometrica, 75, 537–551.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, T. (2002). Robust and consistent estimation in nonlinear errors-in-variables models. Journal of Econometrics, 110, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, T. and Hsiao, C. (2004). Robust estimation of generalized linear models with measurement errors. Journal of Econometrics, 118, 51–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y. and Lin, X. (2003b). Testing the correlation for clustered categorical and censored discrete time-to-event data when covariates are measured without/with errors. Biometrics, 59, 25–35.

    Google Scholar 

  • Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement error model using multiple indicators. Journal of Multivariate Analysis, 65, 139–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B. and Yin, X. (2007). On surrogate dimension reduction for measurement error regression: An invariance law. The Annals of Statistics, 35, 2143–2172.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, H. and Li, R. (2009). Variable selection for partially linear models with measurement errors. Journal of the American Statistical Association, 104, 234–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, X., Zucker, D. M., Li, Y., and Spiegelman, D. (2011). Survival analysis with error-prone time-varying covariates: A risk set calibration approach. Biometrics, 67, 50–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindley, D. V. (1947). Regression lines and the linear functional relationship. Journal of the Royal Statistical Society (Suppl.), 9, 218–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Lue, H.-H. (2004). Principal Hessian directions for regression with measurement error. Biometrika, 91, 409–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyles, R. H., Lin, H.-M., and Williamson, J. M. (2004). Design and analytic considerations for single-armed studies with misclassification of a repeated binary outcome. Journal of Biopharmaceutical Statistics, 14, 229–247.

    Article  MathSciNet  Google Scholar 

  • Ma, Y. and Carroll, R. J. (2006). Locally efficient estimators for semiparametric models with measurement error. Journal of the American Statistical Association, 101, 1465–1474.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, Y. and Li, R. (2010). Variable selection in measurement error models. Bernoulli, 16, 274–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, Y. and Tsiatis, A. A. (2006). On closed form semiparametric estimators for measurement error models. Statistica Sinica, 16, 183–193.

    MathSciNet  MATH  Google Scholar 

  • Ma, Y., Hart, J. D., Janicki, R., and Carroll, R. J. (2011). Local and omnibus goodness-of-fit tests in classical measurement error models. Journal of the Royal Statistical Society, Series B, 73, 81–98.

    Article  MathSciNet  Google Scholar 

  • McCaffrey, D. F., Lockwood, J. R., and Setodji, C. M. (2013). Inverse probability weighting with error-prone covariates. Biometrika, 100, 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Meister, A. (2006). Density estimation with normal measurement error with unknown variance. Statistica Sinica, 16, 195–211.

    MathSciNet  MATH  Google Scholar 

  • Midthune, D., Carroll, R. J., Freedman, L. S., and Kipnis, V. (2016). Measurement error models with interactions. Biostatistics, 17, 277–290.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, A. (2002). Subset Selection in Regression. 2nd ed. Chapman & Hall/CRC, Boca Raton, Florida.

    Book  MATH  Google Scholar 

  • Muff, S., Riebler, A., Rue, H., Saner, P., and Held, L. (2013). Bayesian analysis of measurement error models using INLA. arXiv:1302.3065 [stat.ME].

    Google Scholar 

  • Murad, H. and Freedman, L. S. (2007). Estimating and testing interactions in linear regression models when explanatory variables are subject to classical measurement error. Statistics in Medicine, 26, 4293–4310.

    Article  MathSciNet  Google Scholar 

  • Nakamura, T. (1990). Corrected score functions for errors-in-variables models: Methodology and application to generalized linear models. Biometrika, 77, 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogburn, E. L. and VanderWeele, T. J. (2012). Analytic results on the bias due to nondifferential misclassification of a binary mediator. American Journal of Epidemiology, 176, 555–561.

    Article  Google Scholar 

  • Paulino, C. D. M. and de Bragança Pereira, C. A. (1994). On identifiability of parametric statistical models. Journal of the Italian Statistical Society, 1, 125–151.

    Article  MATH  Google Scholar 

  • Pearl, J. (2010). On measurement bias in causal inference. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010). Corvallis, Oregon: AUAI Press.

    Google Scholar 

  • Pérez, A., Zhang, S., Kipins, V., Midthune, D., Freedman, L. S., and Carroll, R. J. (2012). Intake_epis_food(): An R function for fitting a bivariate nonlinear measurement error model to estimate usual and energy intake for episodically consumed foods. The Journal of Statistical Software, 46, 1–17.

    Article  Google Scholar 

  • Pierce, B. L. and VanderWeele, T. J. (2012). The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies. International Journal of Epidemiology, 41, 1383–1393.

    Article  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2003). Maximum likelihood estimation of generalized linear models with covariate measurement error. The Stata Journal, 3, 386–411.

    MATH  Google Scholar 

  • Reddy, S. K. (1992). Effects of ignoring correlated measurement error in structural equation models. Educational and Psychological Measurement, 52, 549–570.

    Article  Google Scholar 

  • Regier, M. D., Moodie, E. E. M., and Platt, R. W. (2014). The effect of error-in-confounders on the estimation of the causal parameter when using marginal structural models and inverse probability-of-treatment weights: A simulation study. The International Journal of Biostatistics, 10, 1–15.

    Article  MathSciNet  Google Scholar 

  • Rosner, B. A. (1996). Measurement error models for ordinal exposure variables measured with error. Statistics in Medicine, 15, 293–303.

    Article  Google Scholar 

  • Sarkar, A., Mallick, B. K., and Carroll, R. J. (2014). Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors. Biometrics, 70, 823–834.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkar, A., Mallick, B. K., Staudenmayer, J., Pati, D., and Carroll, R. J. (2014). Bayesian semiparametric density deconvolution in the presence of conditionally heteroscedastic measurement errors. Journal of Computational and Graphical Statistics, 23, 1101–1125.

    Article  MathSciNet  Google Scholar 

  • Schaalje, G. B. and Butts, R. A. (1993). Some effects of ignoring correlated measurement errors in straight line regression and prediction. Biometrics, 49, 1262–1267.

    Article  Google Scholar 

  • Schennach, S. M. and Hu, Y. (2013). Nonparametric identification and semiparametric estimation of classical measurement error models without side information. Journal of the American Statistical Association, 108, 177–186.

    Article  MathSciNet  MATH  Google Scholar 

  • Schneeweiss, H. and Cheng, C.-L. (2006). Bias of the structural quasi-score estimator of a measurement error model under misspecification of the regressor distribution. Journal of Multivariate Analysis, 97, 455–473.

    Article  MathSciNet  MATH  Google Scholar 

  • Sepanski, J. H. (1992). Score tests in a generalized linear model with surrogate covariates. Statistics & Probability Letters, 15, l–10.

    Google Scholar 

  • Shaw, P. A. and Prentice, R. L. (2012). Hazard ratio estimation for biomarker-calibrated dietary exposures. Biometrics, 68, 397–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Shen, C.-W. and Chen, Y.-H. (2015). Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error. Biostatistics, 16, 740–753.

    Article  MathSciNet  Google Scholar 

  • Shu, D. and Yi, G. Y. (2017a). Inverse-probability-of-treatment weighted estimation of causal parameters in the presence of error-contaminated and time-dependent confounders. Submitted for publication.

    Google Scholar 

  • Shu, D. and Yi, G. Y. (2017b). Causal inference with measurement error in outcomes: Bias analysis and estimation methods. Submitted for publication.

    Google Scholar 

  • Sinha, S. and Ma, Y. (2014). Semiparametric analysis of linear transformation models with covariate measurement errors. Biometrics, 70, 21–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Sinha, S., Mallick, B. K., Kipnis, V., and Carroll, R. J. (2010). Semiparametric Bayesian analysis of nutritional epidemiology data in the presence of measurement error. Biometrics, 66, 444–454.

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelman, D. (1994). Cost-efficient study designs for relative risk modeling with covariate measurement error. Journal of Statistical Planning and Inference, 42, 187–208.

    Article  MATH  Google Scholar 

  • Spiegelman, D. and Gary, R. (1991). Cost-efficient study designs for binary response data with Gaussian covariate measurement error. Biometrics, 47, 851–869.

    Article  MATH  Google Scholar 

  • Spiegelman, D., Zhao, B., and Kim, J. (2005). Correlated errors in biased surrogates: study designs and methods for measurement error correction. Statistics in Medicine, 24, 1657–1682.

    Article  MathSciNet  Google Scholar 

  • Staudenmayer, J., Ruppert, D., and Buonaccorsi, J. P. (2008). Density estimation in the presence of heteroscedastic measurement error. Journal of the American Statistical Association, 103, 726–736.

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanski, L. A. and Bay, J. M. (1996). Simulation extrapolation deconvolution of finite population cumulative distribution function estimators. Biometrika, 83, 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanski, L. A. and Buzas, J. S. (1995). Instrumental variable estimation in binary measurement error models. Journal of the American Statistical Association, 90, 541–550.

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores for generalized linear measurement-error models. Biometrika, 74, 703–716.

    MathSciNet  MATH  Google Scholar 

  • Stefanski, L. A. and Carroll, R. J. (1990a). Score tests in generalized linear measurement error models. Journal of the Royal Statistical Society, Series B, 52, 345–359.

    Google Scholar 

  • Stefanski, L. A. and Carroll, R. J. (1990b). Deconvoluting kernel density estimators. Statistics, 21, 169–184.

    Google Scholar 

  • Stefanski, L. A. and Carroll, R. J. (1991). Deconvolution-based score tests in measurement error models. The Annals of Statistics, 19, 249–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, W. and Cook, R.D. (1989). Assessing influence on regression coefficients in generalized linear models. Biometrika, 76, 741–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Thoresen, M. and Laake, P. (2007). A simulation study of statistical tests in logistic measurement error models. Journal of Statistical Computation and Simulation, 77, 683–694.

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Tosteson, T. D. and Tsiatis, A. A. (1988). The asymptotic relative efficiency of score tests in a generalized linear model with surrogate covariates. Biometrika, 75, 507–514.

    Article  MathSciNet  MATH  Google Scholar 

  • Tosteson, T. D. and Ware, J. H. (1990). Designing a logistic regression study using surrogate measures for exposure and outcome. Biometrika, 77, 11–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Tosteson, T.D., Buzas, J. S., Demidenko, E., and Karagas, M. (2003). Power and sample size calculations for generalized regression models with covariate measurement error. Statistics in Medicine, 22, 1069–1082.

    Article  Google Scholar 

  • Tsiatis, A. A. and Ma, Y. (2004). Locally efficient semiparametric estimators for functional measurement error models. Biometrika, 91, 835–848.

    Article  MathSciNet  MATH  Google Scholar 

  • VanderWeele, T. J., Valeri, L., and Ogburn, E. L. (2012). The role of measurement error and misclassification in mediation analysis. Epidemiology, 23, 561–564.

    Article  Google Scholar 

  • Vidal, I., Iglesias, P., and Galea, M. (2007). Influential observations in the functional measurement error model. Journal of Applied Statistics, 34, 1165–1183.

    Article  MathSciNet  Google Scholar 

  • Wang, L. (2004). Estimation of nonlinear models with Berkson measurement errors. The Annals of Statistics, 32, 2559–2579.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Q. and Rao, J. N. K. (2002). Empirical likelihood-based inference in linear errors-in-covariables models with validation data. Biometrika, 89, 345–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X.-F. and Wang, B. (2011). Deconvolution estimation in measurement error models: The R package decon. Journal of Statistical Software, 39(10), 1–24.

    Article  Google Scholar 

  • Wang, H., Zou, G., and Wan, A. T. K. (2012). Model averaging for varying-coefficient partially linear measurement error models. Electronic Journal of Statistics, 6, 1017–1039.

    Article  MathSciNet  MATH  Google Scholar 

  • Wansbeek, T. J. and Koning, R. H. (1991). Measurement error and panel data. Statistica Neerlandica, 45, 85–92.

    Article  Google Scholar 

  • Wellman, J. M. and Gunst, R. F. (1991). Influence diagnostics for linear measurement error models. Biometrika, 78, 373–380.

    Article  MathSciNet  Google Scholar 

  • White, E. (2003). Design and interpretation of studies of differential exposure measurement error. American Journal of Epidemiology, 157, 380–387.

    Article  Google Scholar 

  • Xie, S. X., Wang, C. Y., and Prentice, R. L. (2001). A risk set calibration method for failure time regression by using a covariate reliability sample. Journal of the Royal Statistical Society, Series B, 63, 855–870.

    Article  MathSciNet  MATH  Google Scholar 

  • Yi, G. Y. and He, W. (2012). Bias analysis and the simulation-extrapolation method for survival data with covariate measurement error under parametric proportional odds models. Biometrical Journal, 54, 343–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Yi, G. Y., Tan, X., and Li, R. (2015). Variable selection and inference procedures for marginal analysis of longitudinal data with missing observations and measurement error. The Canadian Journal of Statistics, 43, 498–518.

    Article  MathSciNet  MATH  Google Scholar 

  • Yi, G. Y., Yan, Y., Liao, X., and Spielgeman, D. (2016). Estimating functions with covariate misclassification in main study/validation study designs: Applications to nutritional epidemiology. Submitted for publication.

    Google Scholar 

  • Zare, K. and Rasekh, A. (2011). Diagnostic measures for linear mixed measurement error models. SORT, 35, 125–144.

    MathSciNet  MATH  Google Scholar 

  • Zhao, Y. and Lee, A. H. (1995). Assessment of influence in nonlinear measurement error models. Journal of Applied Statistics, 22, 215–225.

    Article  MathSciNet  Google Scholar 

  • Zhao, Y., Lee, A. H., and Hui, Y. V. (1994). Influence diagnostics for generalized linear measurement error models. Biometrics, 50, 1117–1128.

    Article  MATH  Google Scholar 

  • Zidek, J. V., Wong, H., Le, N. D., and Burnett, R. (1996). Causality, measurement error and multicollinearity in epidemiology. Environmetrics, 7, 441–451.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yi, G.Y. (2017). Miscellaneous Topics. In: Statistical Analysis with Measurement Error or Misclassification. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6640-0_9

Download citation

Publish with us

Policies and ethics