Skip to main content

Electron Sources

  • Chapter
  • First Online:
Advanced Transmission Electron Microscopy
  • 6095 Accesses

Abstract

Electrons are emitted from solids by overcoming the electron potential barrier through one of four mechanisms illustrated in Fig. 8.1. The potential barrier arises from the electron interaction with the positively charged atomic nuclei and other negatively charged electrons. To avoid charging during electron emission, the solid must be highly conductive. For this reason, only metals and metallic solids are used as electron emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschlimann M, Hull E et al (1995) A picosecond electron-gun for surface-analysis. Rev Sci Instrum 66:1000–1009

    Article  Google Scholar 

  • Boersch H (1954) Experimentelle bestimmung der energieverteilung in thermisch ausgelösten elektronenstrahlen. Z Phys 139:115–146

    Article  Google Scholar 

  • Butler JW (1966) 6th International Congress Electron Microscopy (Kyoto):191

    Google Scholar 

  • Crewe AV (1964) Scanning techniques for high voltage microscope. In: Proceedings of the AMU-ANL, high voltage electron microscope mtg (Argonne National Laboratory), pp 68–81

    Google Scholar 

  • Crewe AV, Eggenberger DN et al (1968) Electron gun using a field emission source. Rev Sci Instrum 39:576–583

    Article  Google Scholar 

  • Elsayed-Ali HE (1995) Time-resolved reflection high-energy electron diffraction of metal surfaces. Proc SPIE 2521:92–102

    Article  Google Scholar 

  • Everhart TE (1967) Simplified analysis of point-cathode electron sources. J Appl Phys 38(13):4944–4957

    Article  Google Scholar 

  • Forbes RG (1999) Refining the application of Fowler-Nordheim theory. Ultramicroscopy 79:11–23

    Article  Google Scholar 

  • Fowler RH, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc Lond A 119:173–181

    Article  Google Scholar 

  • Haine ME, Einstein PA (1952) Characteristics of the hot cathode electron microscope gun. Br J Appl Phys 3:40

    Article  Google Scholar 

  • Hawkes PW, Kasper E (1996) Principles of electron optics: applied geometrical optics. Academic Press, San Diego

    Google Scholar 

  • Helliwell JR, Rentzepis PM (eds) (1997) Time resolved diffraction. Oxford Science Publications, Oxford

    Google Scholar 

  • Inada H, Kakibayashi H, Isakozawa S, Hashimoto T, Yaguchi T, Nakamura K (2009) Hitachi’s development of cold-field emission scanning transmission electron microscopes. In: Advances in imaging and electron physics. Elsevier, Amsterdam

    Google Scholar 

  • King WE, Campbell GH, Frank A, Reed B, Schmerge JF, Siwick BJ, Stuart BC, Weber PM (2005) Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97:111101

    Article  Google Scholar 

  • Liebl H (1989) The image aberration caused by the acceleration field between concentric spherical electodes. Optik 83:129–135

    Google Scholar 

  • McGinn JB, Swanson LW, Martin NA, Gesley MA, McCord MA, Viswanathan R, Hohn FJ, Wilson AD, Naumann R, Utlaut M (1991) 100 KV Schottky electron-gun. J Vac Sci Technol B 9(6):2925–2928

    Google Scholar 

  • Mourou G, Williamson S (1982) Picosecond electron-diffraction. Appl Phys Lett 41:44–45

    Article  Google Scholar 

  • Murphy EL, Good RH (1956) Thermionic emission, field emission, and the transition region. Phys Rev 102:1464–1473

    Article  Google Scholar 

  • Reimer L, Kohl H (2008) Transmission electron microscopy, 4th edn. Springer, Berlin

    Google Scholar 

  • Samoto N, Shimizu R, Hashimoto H, Tamura N, Gamo K, Namba S (1985) A stable high-brightness electron gun with Zr/W-tip for nanometer lithography. I. Emission properties in Schottky- and thermal field-emission regions. Jap J Appl Phys 24:766–771

    Google Scholar 

  • Scheinfein MR, Qian W, Spence JCH (1993) Aberrations of emission cathodes: nanometer diameter field-emission electron sources. J Appl Phys 73(5):2057–2068

    Article  Google Scholar 

  • Shimoyama H, Maruse S (1984) Theoretical considerations on electron optical brightness for thermionic, field and T-F emissions. Ultramicroscopy 15:239–254

    Article  Google Scholar 

  • Speidel R, Brauchle P (1987) Electron-beam test system with field emission gun. Optik 77:46–54

    Google Scholar 

  • Spence JCH, Qian W, Silverman MP (1994) Electron source brightness and degeneracy from fresnel fringes in field emission point projection microscopy. J Vac Sci Technol A 12:542–547

    Article  Google Scholar 

  • Swanson LW, Bell AE (1973) Recent advances in field electron microscopy of metals. Adv Electron Electron Phys 32:193–309

    Article  Google Scholar 

  • Swanson LW, Schwind GA (2008) Review of ZrO/W Schottky Cathode. In: Orloff J (ed) Handbook of charged particle optics, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Swanson LW, Schwind GA (2009) A review of the cold-field electron cathode. In: Advances in imaging and electron physics, vol 159: cold field emission and the scanning transmission electron microscope. Academic Press, Cambridge

    Google Scholar 

  • Tonomura A (1984) Applications of electron holography using a field emission electron microscope. J Electron Microsc 33(2):101–115

    Google Scholar 

  • Tsong TT (1990) Atom-probe field ion microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Venables JA, Cox G (1987) Computer modelling of field emission gun scanning electron microscope columns. Ultramicroscopy 21:33–45

    Article  Google Scholar 

  • Williams DB, Carter BC (2009) Transmission electron microscopy, a textbook for materials science, 2nd edn. Springer, New York

    Google Scholar 

  • Williamson JC, Zewail AH (1993) Ultrafast electron-diffraction—velocity mismatch and temporal resolution in crossed-beam experiments. Chem Phys Lett 209:10–16

    Article  Google Scholar 

  • Zewail AH (2006) 4d ultrafast electron diffraction, crystallography, and microscopy. Annu Rev Phys Chem 57:65–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Min Zuo or John C. H. Spence .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zuo, J.M., Spence, J.C.H. (2017). Electron Sources. In: Advanced Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6607-3_8

Download citation

Publish with us

Policies and ethics