Skip to main content

Structure of Nanocrystals, Nanoparticles, and Nanotubes

  • Chapter
  • First Online:
Book cover Advanced Transmission Electron Microscopy

Abstract

This chapter introduces the study of crystallinity in nanostructures, i.e., nanocrystallography. Since the field of nanostructure study is vast and our knowledge about nanostructures is still emerging, we will focus instead on the fundamentals of the manifestation of chemical bonds in nanostructures and their study based on atomic-resolution imaging and electron diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DL, Nielsen HB, Anderson JN (1983) Oscillatory relaxation of the Cu(110) surface. Surf Sci 128:294

    Article  Google Scholar 

  • Amelinckx S, Delavignette P (1960) Dislocation loops due to quenched-in point defects in graphite. Phys Rev Lett 5:50–51

    Article  Google Scholar 

  • Amelinckx S, Lucas A, Lambin P (1999) Electron diffraction and microscopy of nanotubes. Rep Prog Phys 62:1471–1524

    Article  Google Scholar 

  • Amirfazli A, Neumann AW (2004) Status of the three-phase line tension. Adv Colloid Interf 110:121–141

    Article  Google Scholar 

  • Amirfazli A, Kwok DY, Gaydos J, Neumann AW (1998) Line tension measurements through drop size dependence of contact angle. J Colloid Interf Sci 205:1–11

    Article  Google Scholar 

  • Avdeenkov AV, Bibikov AV, Bodrenko IV, Nikolaev AV, Taran MD, Tkalya EV (2009) Modified carbon nanostructures as materials for hydrogen storage. Russ Phys J 52:1235–1241

    Article  Google Scholar 

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423

    Article  Google Scholar 

  • Balluffi RW, Brokman A, King AH (1982) CSL/DSC lattice model for general crystal-crystal boundaries and their line defects. Acta Metall 30:1453–1470

    Article  Google Scholar 

  • Bandaru PR, Daraio C, Jin S, Rao AM (2005) Novel electrical switching behaviour and logic in carbon nanotube y-junctions. Nat Mater 4:663–666

    Article  Google Scholar 

  • Baskin Y, Meyer L (1955) Lattice constants of graphite at low temepratures. Phys Rev 100:544

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787–792

    Article  Google Scholar 

  • Besenbacher F (1996) Scanning tunnelling microscopy studies of metal surfaces. Rep Prog Phys 59:1737–1802

    Article  Google Scholar 

  • Bohnen KP, Ho KM (1993) Structure and dynamics at metal surfaces. Surf Sci Rep 19:99–120

    Article  Google Scholar 

  • Bonzel HP (2003) 3d equilibrium crystal shapes in the new light of STM and AFM. Phys Rep 385:1–67

    Article  Google Scholar 

  • Bording JK, Li BQ, Shi YF, Zuo JM (2003) Size- and shape-dependent energetics of nanocrystal interfaces: experiment and simulation. Phys Rev Lett 90:226104

    Article  Google Scholar 

  • Boruvka L, Neumann AW (1977) Generalization of classical-theory of capillarity. J Chem Phy 66:5464–5476

    Article  Google Scholar 

  • Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett 7:3097–3101

    Article  Google Scholar 

  • Cambedouzou J, Pichot V, Rols S, Launois P, Petit P, Klement R, Kataura H, Almairac R (2004) On the diffraction pattern of C-60 peapods. Eur Phys J B 42:31–45

    Article  Google Scholar 

  • Cao Q, Kim H-S, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500

    Article  Google Scholar 

  • Cassell AM, Raymakers JA, Kong J, Dai HJ (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492

    Article  Google Scholar 

  • Chen B, Gao M, Zuo JM, Qu S, Liu B, Huang Y (2003) Binding energy of parallel carbon nanotubes. Appl Phys Lett 83:3570–3571

    Article  Google Scholar 

  • Chen J, Lim B, Lee E, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalyic and electrocatalytic applications. Nano Today 4:81–95

    Article  Google Scholar 

  • Chico L, Benedict LX, Louie SG, Cohen ML (1996) Quantum conductance of carbon nanotubes with defects. Phys Rev B 54:2600–2606

    Article  Google Scholar 

  • Chorro M, Cambedouzou J, Iwasiewicz-Wabnig A, Noe L, Rols S, Monthioux M, Sundqvist B, Launois P (2007a) Discriminated structural behaviour of C-60 and C-70 peapods under extreme conditions. EPL 79:56003

    Article  Google Scholar 

  • Chorro M, Delhey A, Noe L, Monthioux M, Launois P (2007b) Orientation of C-70 molecules in peapods as a function of the nanotube diameter. Phys Rev B 75:035416

    Article  Google Scholar 

  • Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79:1873

    Article  Google Scholar 

  • Collins PG (2009) Defects and disorder in carbon nanotubes. In: Narlikar AV, Fu YY (eds) Oxford handbook of nanoscience and technology: frontiers and advances. Oxford University Press, Oxford

    Google Scholar 

  • Cosandey F, Madey TE (2001) Growth, morphology, interfacial effects and catalytic properties of Au on TiO2. Surf Rev Lett 8:73–93

    Article  Google Scholar 

  • Cowley JM, Spence JCH (1981) Convergent beam electron microdiffraction from small crystals. Ultramicroscopy 6:359–366

    Article  Google Scholar 

  • Dai L (2006) Carbon nanotechnology. Elsevier, Amsterdam

    Google Scholar 

  • David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Crystal-structure and bonding of ordered C-60. Nature 353:147–149

    Article  Google Scholar 

  • Davis HL, Noonan JR (1983) Multilayer relaxation in metallic surfaces as demonstrated by LEED analysis. Surf Sci 126:245

    Article  Google Scholar 

  • Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method—a review of theory and applications. Mat Sci Rep 9:251–310

    Article  Google Scholar 

  • Delattre T, Feuillet-Palma C, Herrmann LG, Morfin P, Berroir JM, Feve G, Placais B, Glattli DC, Choi MS, Mora C, Kontos T (2009) Noisy Kondo impurities. Nat Phys 5:208–212

    Article  Google Scholar 

  • Delavignette P, Amelinckx S (1962) Dislocation patterns in graphite. J Nucl Mater 5(1):17–66

    Article  Google Scholar 

  • Dinadayalane TC, Leszczynski J (2010) Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Struct Chem 21:1155–1169

    Article  Google Scholar 

  • Doye JPK, Wales DJ (1995) Calculation of thermodynamic properties of small Lennard-Jones clusters incorporating anharmonicity. J Chem Phy 102:9659–9672

    Article  Google Scholar 

  • Duke CB (1996) Semiconductor surface reconstruction: the structural chemistry of two-dimensional surface compounds. Chem Rev 96:1237–1259

    Article  Google Scholar 

  • Dupré AM, Dupré P (1869) Théorie mécanique de la chaleur. Gauthier-Villars

    Google Scholar 

  • Dvorak F, Farnesi Camellone M, Tovt A, Tran N-D, Negreiros FR, Vorokhta M, Skala T, Matolinova I, Myslivecek J, Matolin V, Fabris S (2016) Creating single-atom Pt-ceria catalysts by surface step decoration. Nat Commun 7:10801

    Article  Google Scholar 

  • Frenkel AI, Nemzer S, Pister I, Soussan L, Harris T, Sun Y, Rafailovich MH (2005) Size-controlled synthesis and characterization of thiol-stabalized gold nanoparticles. J Chem Phys 123:184701

    Article  Google Scholar 

  • Gao M, Zuo JM, Twesten RD, Petrov I, Nagahara LA, Zhang R (2003) Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction. Appl Phys Lett 82:2703–2705

    Article  Google Scholar 

  • Gao M, Zuo JM, Zhang R, Nagahara LA (2006) Structure determinations of double-wall carbon nanotubes grown by catalytic chemical vapor deposition. J Mater Sci 41:4382–4388

    Article  Google Scholar 

  • Gao W, Choi AS, Zuo J-M (2014) Interaction of nanometer-sized gold nanocrystals with rutile (110) surface steps revealed at atomic resolution. Surf Sci 625:16–22

    Article  Google Scholar 

  • Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phy. Rev B 62:13104–13110

    Article  Google Scholar 

  • Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  Google Scholar 

  • Gryaznov VG, Heydenreich J, Kaprelov AM, Nepijko SA, Romanov AE, Urban J (1999) Pentagonal symmetry and disclinations in small particles. Cryst Res Technol 34:1091–1119

    Article  Google Scholar 

  • Gülseren O, Yildirim T, Ciraci S (2002) Systematic ab initio study of curvature effects in carbon nanotubes. Phys Rev B 65:153405

    Article  Google Scholar 

  • Hall BD, Flueli M, Monot R, Borel JP (1991) Multiply twinned structures in unsupported ultrafine silver particles observed by electron-diffraction. Phys Rev B 43:3906–3917

    Article  Google Scholar 

  • Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533–606

    Article  Google Scholar 

  • Hansen KH, Worren T, Stempel S, Lægsgaard E, Bäumer M, Freund HJ, Besenbacher F, Stensgaard I (1999) Palladium nanocrystals on Al2O3: structure and adhesion energy. Phys Rev Lett 83:4120

    Article  Google Scholar 

  • Hargittai I (2006) Gas-phase electron diffraction for molecular structure determination. In: Weirich TE, Lábár JL, Zou X (eds) Electron crystallography: novel approaches for structure determination of nanosized materials. Springer, Dordrecht

    Google Scholar 

  • Hasegawa M, Nishidate K (2004) Semiempirical approach to the energetics of interlayer binding in graphite. Phys Rev B 70:205431

    Article  Google Scholar 

  • Heine V, Marks LD (1986) Competition between pairwise and multi-atom at noble metal surfaces. Surf Sci 165:65

    Article  Google Scholar 

  • Henry CR (2005) Morphology of supported nanoparticles. Prog Surf Sci 80:92–116

    Article  Google Scholar 

  • Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:13870–13873

    Article  Google Scholar 

  • Heyraud JC, Metois JJ (1980) Equilibrium shape of gold crystallites on a graphite cleavage surface—surface energies and interfacial energy. Acta Metall 28:1789–1797

    Article  Google Scholar 

  • Hill TL (1956) Statistical mechanics: principles and selected applications. McGraw-Hill, New York

    Google Scholar 

  • Hirahara K, Bandow S, Suenaga K, Kato H, Okazaki T, Shinohara H, Iijima S (2001) Electron diffraction study of one-dimensional crystals of fullerenes. Phys Rev B 64:115420

    Article  Google Scholar 

  • Hirahara K, Kociak M, Bandow S, Nakahira T, Itoh K, Saito Y, Iijima S (2006) Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Phys Rev B 73:195420

    Article  Google Scholar 

  • Hodak M, Girifalco LA (2003a) Ordered phases of fullerene molecules formed inside carbon nanotubes. Phy. Rev B 67:075419

    Article  Google Scholar 

  • Hodak M, Girifalco LA (2003b) Systems of C-60 molecules inside (10, 10) and (15, 15) nanotube: a Monte Carlo study. Phys Rev B 68:085405

    Article  Google Scholar 

  • Howie A, Marks LD (1984) Elastic strains and the energy balance for multiply twinned particles. Philos Mag A 49:95–109

    Article  Google Scholar 

  • Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413

    Article  Google Scholar 

  • Huang WJ, Sun R, Tao J, Menard LD, Nuzzo RG, Zuo JM (2008) Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7:308–313

    Article  Google Scholar 

  • Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389

    Article  Google Scholar 

  • Ichimiya A, Cohen PI (2004) Reflection high energy electron diffraction. Cambridge University Press, Cambridge

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56:616–619

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  • Inagaki M (2000) New carbons control of structure and functions. Elsevier

    Google Scholar 

  • Ino S (1966) Epitaxial growth of metals on rocksalt faces cleaved in vacuum. 2. Orientation and structure of gold particles formed in ultrahigh vacuum. J Phys Soc Jpn 21:346

    Article  Google Scholar 

  • Ino S (1969) Stability of multiply-twinned particles. J Phys Soc Jpn 27:941

    Article  Google Scholar 

  • Jiang QT, Fenter P, Gustafsson T (1991) Geometric structure and surface vibrations of Cu(001) determined by medium-energy ion-scattering. Phys Rev B 44:5773–5778

    Article  Google Scholar 

  • Jiang YY, Zhou W, Kim T, Huang Y, Zuo JM (2008) Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces. Phys Rev B 77:153405

    Article  Google Scholar 

  • Johnson CL, Snoeck E, Ezcurdia M, Rodriguez-Gonzalez B, Pastoriza-Santos I, Liz-Marzan LM, Hytch MJ (2008) Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nat Mater 7:120–124

    Article  Google Scholar 

  • Kaishew R (1952) Arbeitstagung fetsköper Phys., Dresden p. 81

    Google Scholar 

  • Kanamitsu K, Saito S (2002) Geometries, electronic properties, and energetics of isolated single walled carbon nanotubes. J Phys Soc Jpn 71:483–486

    Article  Google Scholar 

  • Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236

    Article  Google Scholar 

  • Kaxiras E, Pandey KC (1988) Energetics of defects and diffusion mechanisms in graphite. Phys Rev Lett 61:2693–2696

    Article  Google Scholar 

  • Kern R, Metois G (1979) Basic mechanisms in the early stage of epitaxy. Curr Top Mat Sci 3:135–419

    Google Scholar 

  • Khlobystov AN, Britz DA, Ardavan A, Briggs GAD (2004) Observation of ordered phases of fullerenes in carbon nanotubes. Phys Rev Lett 92:245507

    Article  Google Scholar 

  • Kim K, Lee Z, Malone BD, Chan KT, Aleman B, Regan W, Gannett W, Crommie MF, Cohen ML, Zettl A (2011) Multiply folded graphene. Phys Rev B 83:245433

    Article  Google Scholar 

  • Kocabas C, Hur S-H, Gaur A, Meitl MA, Shim M, Rogers JA (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1:1110–1116

    Article  Google Scholar 

  • Koga K (2006) Novel bidecahedral morphology in gold nanoparticles frozen from liquid. Phys Rev Lett 96:115501

    Article  Google Scholar 

  • Koplitz LV, Dulub O, Diebold U (2003) STM study of copper growth on ZnO (0001)-Zn and ZnO (0001)-O surfaces. J Phys Chem B 107:10583–10590

    Article  Google Scholar 

  • Kotakoski J, Meyer JC, Kurasch S, Santos-Cottin D, Kaiser U, Krasheninnikov AV (2011) Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys Rev B 83:245420

    Article  Google Scholar 

  • Koziol K, Shaffer M, Windle A (2005) Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv Mater 17:760–763

    Article  Google Scholar 

  • Lambin P, Lucas AA (1997) Quantitative theory of diffraction by carbon nanotubes. Phys Rev B 56:3571–3574

    Article  Google Scholar 

  • Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Morphological control of catalytically active platinum. Angew Chem Int Ed 45:7824–7828

    Article  Google Scholar 

  • Li BQ, Zuo JM (2005) Structure and shape transformation from multiply twinned particles to epitaxial nanocrystals: Importance of interface on the structure of ag nanoparticles. Phys Rev B 72:085434

    Article  Google Scholar 

  • Liu J (2003) Study of metal-support interactions in model nanocatalysts: anchoring of Pt metallic nanoparticles on alumina support. Micros Microanal 9(S02):290–291

    Google Scholar 

  • Liu B, Yu MF, Huang YG (2004) Role of lattice registry in the full collapse and twist formation of carbon nanotubes. Phys Rev B 70:161402

    Article  Google Scholar 

  • Liu P, Zhang YW, Gao HJ, Lu C (2008) Energetics and stability of C-60 molecules encapsulated in carbon nanotubes. Carbon 46:649–655

    Article  Google Scholar 

  • Liu F, Song SY, Xue DF, Zhang HJ (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24:1089–1094

    Article  Google Scholar 

  • Loretto D, Gibson JM, Yalisove SM (1989) Evidence for a dimer reconstruction at a metal-silicon interface. Phys Rev Lett 63:298–301

    Article  Google Scholar 

  • Lu XW, Gao WP, Zuo JM, Yuan JB (2015) Atomic resolution tomography reconstruction of tilt series based on a GPU accelerated hybrid input-output algorithm using polar fourier transform. Ultramicroscopy 149:64–73

    Article  Google Scholar 

  • Lynch RW, Drickamer HG (1966) Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. J Chem Phys 44:181–184

    Article  Google Scholar 

  • Maniwa Y, Fujiwara R, Kira H, Tou H, Nishibori E, Takata M, Sakata M, Fujiwara A, Zhao XL, Iijima S, Ando Y (2001) Multiwalled carbon nanotubes grown in hydrogen atmosphere: an X-ray diffraction study. Phys Rev B 64:073105

    Article  Google Scholar 

  • Marks LD (1984) Surface structure and energetics of multiply twinned particles. Philos Mag A 49:81–93

    Article  Google Scholar 

  • Marks LD (1994) Experimental studies of small particles structures. Rep Prog Phys 57:603

    Article  Google Scholar 

  • Marks LD, Peng L (2016) Nanoparticle shape, thermodynamics and kinetics. J Phys-Condens Matter 28:053001

    Article  Google Scholar 

  • Martin TP (1996) Shells of atoms. Phys Rep 273:199–241

    Article  Google Scholar 

  • Matthews KD, Lemaitre MG, Kim T, Chen H, Shim M, Zuo JM (2006) Growth modes of carbon nanotubes on metal substrates. J Appl Phys 100:044309

    Article  Google Scholar 

  • Miao JW, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–344

    Article  Google Scholar 

  • Michel KH, Verberck B, Nikolaev AV (2005) Nanotube field and one-dimensional fluctuations of C-60 molecules in carbon nanotubes. Eur Phys J B 48:113–124

    Article  Google Scholar 

  • Minot ED, Yaish Y, Sazonova V, Park JY, Brink M, McEuen PL (2003) Tuning carbon nanotube band gaps with strain. Phys Rev Lett 90:156401

    Article  Google Scholar 

  • Mitchell CEJ, Howard A, Carney M, Egdell RG (2001) Direct observation of behaviour of au nanoclusters on TiO2(1 1 0) at elevated temperatures. Surf Sci 490:196–210

    Article  Google Scholar 

  • Mott NF (1948) Slip at grain boundaries and grain growth in metals. Proc Phys Soc 60:391

    Article  Google Scholar 

  • Murphy CJ, San TK, Gole AM, Orendorff CJ, Gao JX, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  Google Scholar 

  • Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    Article  Google Scholar 

  • Negreiros FR, Soares EA, de Carvalho VE (2007) Energetics of free pure metallic nanoclusters with different motifs by equivalent crystal theory. Phys Rev B 76:205429

    Article  Google Scholar 

  • Noonan JR, Davis HL (1984) Truncation-induced multilayer relaxation of the Al(110) surface. Phys Rev B 29:4349

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • Pakarinen OH, Barth C, Foster AS, Nieminen RM, Henry CR (2006) High-resolution scanning force microscopy of gold nanoclusters on the KBr (001) surface. Phys Rev B 73:235428

    Article  Google Scholar 

  • Pan M, Cowley JM, Garcia R (1987) STEM and microdiffraction studies of Rh/CeO2. Micron Microsc Acta 18:165–169

    Article  Google Scholar 

  • Pan M, Cowley JM, Barry JC (1989) Coherent electron microdiffraction from small metal particles. Ultramicroscopy 30:385–394

    Article  Google Scholar 

  • Pan CT, Hinks JA, Ramasse QM, Greaves G, Bangert U, Donnelly SE, Haigh SJ (2014) In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene. Sci Rep 4:6334

    Article  Google Scholar 

  • Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789–821

    Article  Google Scholar 

  • Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553

    Article  Google Scholar 

  • Pauling L (1960) The nature of the chemical bond (3rd). Cornell University Press, New York

    Google Scholar 

  • Pauling L (1966) The structure and properties of graphite and boron nitride. Chemistry 56:1646–1652

    Google Scholar 

  • Perez MS, Lerner B, Resasco DE, Obregon PDP, Julian PM, Mandolesi PS, Buffa FA, Boselli A, Lamagna A (2010) Carbon nanotube integration with a cmos process. Sensors 10(4):3857–3867

    Article  Google Scholar 

  • Petkov V, Wanjala BN, Loukrakpam R, Luo J, Yang L, Zhong C-J, Shastri S (2012) Pt-Au alloying at the nanoscale. Nano Lett 12:4289–4299

    Article  Google Scholar 

  • Pfeifer MA, Williams GJ, Vartanyants IA, Harder R, Robinson IK (2006) Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442:63

    Article  Google Scholar 

  • Pompe T, Herminghaus S (2000) Three-phase contact line energetics from nanoscale liquid surface topographies. Phys Rev Lett 85:1930–1933

    Article  Google Scholar 

  • Qin L-C (2007) Determination of the chiral indices (n, m) of carbon nanotubes by electron diffraction. Phys Chem Chem Phys 9:31–48

    Article  Google Scholar 

  • Quo Y, Karasawa N, Goddard WA (1991) Prediction of fullerene packing in C60 and C70 crystals. Nature 351:464–467

    Article  Google Scholar 

  • Ran K, Chen Q, Zuo JM (2012a) Fabrication and structure characterization of quasi-2-dimensional amorphous carbon structures. Acta Phys Chim Sin 28:1551–1555

    Google Scholar 

  • Ran K, Mi X, Shi ZJ, Chen Q, Shi YF, Zuo JM (2012b) Molecular packing of fullerenes inside single-walled carbon nanotubes. Carbon 50:5450–5457

    Article  Google Scholar 

  • Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013) Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun 4:2811

    Article  Google Scholar 

  • Reinhard D, Hall BD, Ugarte D, Monot R (1997) Size-independent fcc-to-icosahedral structural transition in unsupported silver clusters: an electron diffraction study of clusters produced by inert-gas aggregation. Phys Rev B 55:7868–7881

    Article  Google Scholar 

  • Reinhard D, Hall BD, Berthoud P, Valkealahti S, Monot R (1998) Unsupported nanometer-sized copper clusters studied by electron diffraction and molecular dynamics. Phys Rev B 58:4917–4926

    Article  Google Scholar 

  • Renaud G, Lazzari R, Revenant C, Barbier A, Noblet M, Ulrich O, Leroy F, Jupille J, Borensztein Y, Henry CR, Deville JP, Scheurer F, Mane-Mane J, Fruchart O (2003) Real-time monitoring of growing nanoparticles. Science 300:1416–1419

    Article  Google Scholar 

  • Rieder KH, Engel T, Swendsen RH, Manninen M (1983) A helium diffraction study of the reconstructed Au(100) surface. Surf Sci 127:223–242

    Article  Google Scholar 

  • Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592–12595

    Article  Google Scholar 

  • Robinson IK, Vartanyants IA (2001) Use of coherent X-ray diffraction to map strain fields in nanocrystals. Appl Surf Sci 182:186–191

    Article  Google Scholar 

  • Robinson IK, Vartanyants I, Williams GJ, Pfeifer MA, Pitney JA (2001) Reconstruction of shapes of gold nanocrystals using coherent X-ray diffraction. Phys Rev Lett 87:195505

    Article  Google Scholar 

  • Ruland W, Schaper AK, Hou H, Greiner A (2003) Multi-wall carbon nanotubes with uniform chirality: evidence for scroll structures. Carbon 41:423–427

    Article  Google Scholar 

  • Sadan H, Kaplan WD (2006) Au-sapphire (0001) solid-solid interfacial energy. J Mater Sci 41:5099–5107

    Article  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  • Salehi-Khojin A, Lin KY, Field CR, Masel RI (2010) Nonthermal current-stimulated desorption of gases from carbon nanotubes. Science 329:1327–1330

    Article  Google Scholar 

  • Sanchez S, Small M, Zuo J-M, Nuzzo RG (2009a) Structural characterization of Pt-Pd and Pd-Pt core-shell nanoclusters at atomic resolution. J Am Chem Soc 131:8683–8689

    Article  Google Scholar 

  • Sanchez SI, Menard LD, Bram A, Kang JH, Small MW, Nuzzo RG, Frenkel AI (2009b) The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on γ-Al2O3. J Am Chem Soc 131:7040

    Article  Google Scholar 

  • Sanchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejon P (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59:12678–12688

    Article  Google Scholar 

  • Shah AB, Sivapalan ST, DeVetter BM, Yang TK, Wen JG, Bhargava R, Murphy CJ, Zuo JM (2013) High-index facets in gold nanocrystals elucidated by coherent electron diffraction. Nano Lett 13:1840–1846

    Google Scholar 

  • Sivaramakrishnan S, Wen JG, Scarpelli ME, Pierce BJ, Zuo JM (2010) Equilibrium shapes and triple line energy of epitaxial gold nanocrystals supported on TiO2 (110). Phys Rev B 82:195421

    Article  Google Scholar 

  • Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C-60 in carbon nanotubes. Nature 396:323–324

    Article  Google Scholar 

  • Smoluchowski R (1941) Anisotropy of the electronic work function of metals. Phys Rev 60:661

    Article  Google Scholar 

  • Somani PR (2010) Pressure sensitive multifunctional solar cells using carbon nanotubes. Appl Phys Lett 96:173504

    Article  Google Scholar 

  • Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  • Stensgaard I, Feidenhans’l R, Sorensen JE (1983) Surface relxation of Cu(110): An ion scattering investigation. Surf Sci 128:281

    Article  Google Scholar 

  • Stevenson SA, Dumesic JA, Baker RT (1987) Metal-support interactions in catalysis, sintering and redispersion. Van Norstrand Reinhold

    Google Scholar 

  • Stone AJ, Wales DJ (1986) Theoretical-studies of icosahedral C60 and some related species. Chem Phys Lett 128(5–6):501–503

    Article  Google Scholar 

  • Suenaga K, Okazaki T, Hirahara K, Bandow S, Kato H, Taninaka A, Shinohara H, Iijima S (2003) High-resolution electron microscopy of individual metallofullerene molecules on the dipole orientations in peapods. Appl Phys A-Mater Sci Pro 76:445–447

    Article  Google Scholar 

  • Suenaga K, Wakabayashi H, Koshino M, Sato Y, Urita K, Iijima S (2007) Imaging active topological defects in carbon nanotubes. Nat Nanotechnol 2:358–360

    Article  Google Scholar 

  • Tanner RE, Goldfarb I, Castell MR, Briggs GAD (2001) The evolution of Ni nanoislands on the rutile TiO2(110) surface with coverage, heating and oxygen treatment. Surf Sci 486:167–184

    Article  Google Scholar 

  • Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  Google Scholar 

  • Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Article  Google Scholar 

  • Templeton AC, Chen S, Gross SM, Murray RW (1999) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme a monolayers. Langmuir 15:66–76

    Article  Google Scholar 

  • Teranishi T, Hosoe M, Miyake M (1997) Formation for monodispersed ultrafine platinum and their electrophoretic deposition on electrodes. Adv Mater 9:65–67

    Article  Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  • Timoshenko S, Maccullough GH (1935) Elements of strength of materials D. Van Nostrand Company, New York

    Google Scholar 

  • Troche KS, Coluci VR, Braga SF, Chinellato DD, Sato F, Legoas SB, Rurali R, Galvao DS (2005) Prediction of ordered phases of encapsulated C-60, C-70, and C-78 inside carbon nanotubes. Nano Lett 5:349–355

    Article  Google Scholar 

  • Trucano P, Chen R (1975) Structure of graphite by neutron-diffraction. Nature 258:136–137

    Article  Google Scholar 

  • Uppenbrink J, Wales DJ (1992) Structure and energetics of model metal-clusters. J Chem Phys 96:8520–8534

    Article  Google Scholar 

  • Van Hove MA, Weinberg WH, Chan C-M (1986) Low-energy electron diffraction: experiment, theory and surface structure determination. Springer, New York

    Book  Google Scholar 

  • Venables JA (2000) Introduction to surface and thin film processes. Cambridge University Press, Cambridge

    Google Scholar 

  • Verberck B, Michel KH (2006) Nanotube field of C-60 molecules in carbon nanotubes: Atomistic versus continuous approach. Phys Rev B 74:045421

    Article  Google Scholar 

  • Verberck B, Michel KH, Nikolaev AV (2006) The C-60 molecules in (C60)(n)@SWCNT peapods: crystal field, intermolecular interactions and dynamics. Fuller Nanotubes Carbon Nanostruct 14:171–178

    Article  Google Scholar 

  • Vitos L, Ruban AV, Skriver HL, Kollar J (1998) The surface energy of metals. Surf Sci 411:186–202

    Article  Google Scholar 

  • Walgraef D (2007) On the mechanics of deformation instabilities in carbon nanotubes. Eur Phys J-Spec Top 146:443–457

    Google Scholar 

  • Wanjala BN, Luo J, Loukrakpam R, Fang B, Mott D, Njoki PN, Engelhard M, Naslund HR, Wu JK, Wang LC, Malis O, Zhong CJ (2010) Nanoscale alloying, phase-segregation, and core-shell evolution of gold-platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem Mater 22:4282–4294

    Article  Google Scholar 

  • Warner JH, Margine ER, Mukai M, Robertson AW, Giustino F, Kirkland AI (2012) Dislocation-driven deformations in graphene. Science 337:209–212

    Article  Google Scholar 

  • Worren T, Hojrup Hansen K, Laegsgaard E, Besenbacher F, Stensgaard I (2001) Copper clusters on Al2O3/NiAl(1 1 0) studied with STM. Surf Sci 477:8–16

    Article  Google Scholar 

  • Wu J, Qi L, You H, Gross A, Li J, Yang H (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134:11880–11883

    Article  Google Scholar 

  • Wulff G (1901) Z Kristallogr 34:449–530

    Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  Google Scholar 

  • Xiao J, Liu B, Huang Y, Zuo J, Hwang KC, Yu MF (2007) Collapse and stability of single- and multi-wall carbon nanotubes. Nanotechnology 18:395703

    Article  Google Scholar 

  • Xie X, Wahab MA, Li Y, Islam AE, Tomic B, Huang J, Burns B, Seabron E, Dunham SN, Du F, Lin J, Wilson WL, Song J, Huang Y, Alam MA, Rogers JA (2015) Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes. J Appl Phys 117:134303

    Article  Google Scholar 

  • Xu R, Chen C-C, Wu L, Scott MC, Theis W, Ophus C, Bartels M, Yang Y, Ramezani-Dakhel H, Sawaya MR, Heinz H, Marks LD, Ercius P, Miao J (2015) Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat Mater 14:1099–1103

    Article  Google Scholar 

  • Yang L, Han J (2000) Electronic structure of deformed carbon nanotubes. Phys Rev Lett 85:154–157

    Article  Google Scholar 

  • Yang CY, Yacaman MJ, Heinemann K (1979) Crystallography of decahedral and icosahedral particles. 2. High symmetry orientations. J Crystal Growth 47:283–290

    Article  Google Scholar 

  • Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M (2007) Solvothermal synthesis of mulitple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 111:9095–9104

    Article  Google Scholar 

  • Yazyev OV, Louie SG (2010) Topological defects in graphene: dislocations and grain boundaries. Phys Rev B 81:195420

    Article  Google Scholar 

  • Yazyev OV, Chen YP (2014) Polycrystalline graphene and other two-dimensional materials. Nat Nanotechnol 9:755–767

    Article  Google Scholar 

  • Yoon M, Berber S, Tomanek D (2005) Energetics and packing of fullerenes in nanotube peapods. Phys Rev B 71:155406

    Article  Google Scholar 

  • Yu MF, Kowalewski T, Ruoff RS (2000) Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys Rev Lett 85:1456–1459

    Article  Google Scholar 

  • Zhang J, Zuo JM (2009) Structure and diameter-dependent bond lengths of a multi-walled carbon nanotube revealed by electron diffraction. Carbon 47:3515–3528

    Article  Google Scholar 

  • Zhang R, Tsui RK, Tresek J, Rawlett AM, Amlani I, Hopson T, Fejes P (2003) Formation of single-walled carbon nanotubes via reduced-pressure thermal chemical vapor deposition. J Phys Chem B 107:3137–3140

    Article  Google Scholar 

  • Zhang GY, Bai XD, Wang EG, Guo Y, Guo WL (2005) Monochiral tubular graphite cones formed by radial layer-by-layer growth. Phys Rev B 71:113411

    Article  Google Scholar 

  • Zhang J, Xiao JL, Meng XH, Monroe C, Huang YG, Zuo JM (2010) Free folding of suspended graphene sheets by random mechanical stimulation. Phys Rev Lett 104:166805

    Article  Google Scholar 

  • Zhou W, Huang Y, Liu B, Hwang KC, Zuo JM, Buehler MJ, Gao H (2007) Self-folding of single- and multiwall carbon nanotubes. Appl Phys Lett 90:073107

    Article  Google Scholar 

  • Zhu J, Cowley JM (1982) Micro-diffraction from antiphase domain boundaries in Cu3Au. Acta Cryst A38:718–724

    Article  Google Scholar 

  • Zhu J, Cowley JM (1983) Micro-diffraction from stacking-faults and twin boundaries in fcc crystals. J Appl Crystallogr 16:171–175

    Article  Google Scholar 

  • Zhu J, Cowley JM (1985) Study of early-stage precipitation in Al-4 %Cu by microdiffraction and STEM. Ultramicroscopy 18:419–426

    Article  Google Scholar 

  • Zhu J, Shen Y, Xie A, Qiu L, Zhang Q, Zhang S (2007) Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid. J Phys Chem C 111:7629–7633

    Article  Google Scholar 

  • Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA (2003) Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300:1419–1421

    Article  Google Scholar 

  • Zuo JM, Gao M, Tao J, Li BQ, Twesten R, Petrov I (2004) Coherent nano-area electron diffraction. Microsc Res Tech 64:347–355

    Article  Google Scholar 

  • Zuo JM, Kim T, Celik-Aktas A, Tao J (2007) Quantitative structural analysis of individual nanotubes by electron diffraction. Z Kristallogr 222:625–633

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Min Zuo or John C. H. Spence .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zuo, J.M., Spence, J.C.H. (2017). Structure of Nanocrystals, Nanoparticles, and Nanotubes. In: Advanced Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6607-3_17

Download citation

Publish with us

Policies and ethics