Skip to main content

Imaging and Characterization of Crystal Defects

  • Chapter
  • First Online:
  • 6107 Accesses

Abstract

This chapter describes the theory of imaging and characterization of defects in crystals by electron microscopy. We start with an overview. This is followed by an introduction to atomic displacements and strain in crystals. The following sections then discuss the kinematic theory of diffraction contrast imaging, the weak-beam imaging technique, and the dynamical theory of electron diffraction from crystal defects. This is followed by a review of diffraction-based defect characterization methods, using CBIM or LACBED. The last section describes the determination of atomic structure of defects using HREM and STEM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander H, Spence JCH, Shindo D, Gottschalk H, Long N (1986) Forbidden-reflection lattice imaging for the determination of kink densities on partial dislocations. Philos Mag A 53:627–643

    Article  Google Scholar 

  • Amelinckx S, Gevers R, Van Landuyt J (1978) Diffraction and imaging techniques in materials science. North-Holland, Amsterdam

    Google Scholar 

  • Arslan I, Bleloch A, Stach EA, Ogut S, Browning ND (2006) Using EELS to observe composition and electronic structure variations at dislocation cores in GaN. Philos Mag 86:4727–4746

    Article  Google Scholar 

  • Carpenter RW, Spence JCH (1982) Three-dimensional strain-field information in convergent-beam electron diffraction patterns. Acta Cryst A38:55–61

    Article  Google Scholar 

  • Cherns D (1974) Direct resolution of surface atomic steps by transmission electron-microscopy. Phil Mag 30:549–556

    Article  Google Scholar 

  • Cherns D, Preston AR (1989) Convergent beam diffraction studies of interfaces, defects, and multilayers. J Electron Micr Tech 13:111–122

    Article  Google Scholar 

  • Cockayne DJH (1981) Weak-beam electron microscopy. Annu Rev Mater Sci 11:75–95

    Article  Google Scholar 

  • Cockayne DJH, Ray ILF, Whelan MJ (1969) Investigations of dislocation strain fields using weak beams. Philos Mag 20:1265–1270

    Article  Google Scholar 

  • Cosgriff EC, Nellist PD, Hirsch PB, Zhou Z, Cockayne DJH (2010) ADF STEM imaging of screw dislocations viewed end-on. Philos Mag 90:4361–4375

    Article  Google Scholar 

  • De Graef M (2003) Introduction to conventional transmission electron microscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Eaglesham DJ (1989) Applications of convergent beam electron diffraction in materials science. J Electron Micr Tech 13:66–75

    Article  Google Scholar 

  • Edington JW (1975) Practical electron microscopy in materials science, 3. Interpretation of transmission electron micrographs. Philips Technical Library, Eindhoven

    Book  Google Scholar 

  • Edington JW (1976) Practical electron microscopy in materials science, 4. Typical electron microscope investigations. Philips Technical Library, Eindhoven

    Book  Google Scholar 

  • Eshelby JD, Stroh AN (1951) Dislocations in thin plates. Lond Edinb Dubl Phil Mag 42:1401–1405

    Article  Google Scholar 

  • Groger R, Dudeck KJ, Nellist PD, Vitek V, Hirsch PB, Cockayne DJH (2011) Effect of Eshelby twist on core structure of screw dislocations in molybdenum: atomic structure and electron microscope image simulations. Philos Mag 91:2364–2381

    Article  Google Scholar 

  • Head AK, Humble P, Clarebrough LM, Morton AJ, Forwood CT (1973) Computed electron micrographs and defect identification. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Hefferan CM, Li SF, Lind J, Lienert U, Rollett AD, Wynblatt P, Suter RM (2009) Statistics of high purity nickel microstructure from high energy X-ray diffraction microscopy. CMC-Comput Mater Continua 14:209–219

    Google Scholar 

  • Hirsch PB, Howie A, Whelan MJ (1960) A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects. Philos T R Soc Lond A 252:499

    Article  Google Scholar 

  • Hirsch P, Howie A, Nicolson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals. Robert E. Krieger Publishing Company, Malabar

    Google Scholar 

  • Hirth JP, Lothe J (1983) Theory of dislocations. Krieger Publishing Company, Malabar

    Google Scholar 

  • Howe JM (1997) Interfaces in materials: Atomic structure, thermodynamics and kinetics of solid-vapor, solid-liquid and solid-solid interfaces. Wiley, New York

    Google Scholar 

  • Howie A, Basinski ZS (1968) Approximations of dynamical theory of diffraction contrast. Philos Mag 17:1039

    Article  Google Scholar 

  • Hudson TS, Dudarev SL, Sutton AP (2004) Confinement of interstitial cluster diffusion by oversized solute atoms. Proc R Soc A 460:2457–2475

    Article  Google Scholar 

  • Humphreys CJ (1979b) STEM imaging of crystals and defects. In: Introduction to analytical electron microscopy. J. J. Hren, J. I. Goldstein and D. C. Joy. Plenum, New York

    Google Scholar 

  • Humphreys CJ, Maher DM, Fraser HL, Eaglesham DJ (1988) Convergent-beam imaging—a transmission electron-microscopy technique for investigating small localized distortions in crystals. Philos Mag A 58:787–798

    Article  Google Scholar 

  • Jenkins ML (1994) Characterization of radiation-damage microstructures by TEM. J Nucl Mater 216:124–156

    Article  Google Scholar 

  • Jenkins ML, Kirk MA, Fukushima H (1999) On the application of the weak-beam technique to the determination of the sizes of small point-defect clusters in ion-irradiated copper. J Electron Microsc 48:323–332

    Article  Google Scholar 

  • Jia CL, Lentzen M, Urban K (2003) Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299:870–873

    Article  Google Scholar 

  • Kelly AA, Knowles KM (2012) Crystallography and crystal defects, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  • Kolar HR, Spence JCH, Alexander H (1996) Observation of moving dislocation kinks and unpinning. Phys Rev Lett 77:4031–4034

    Article  Google Scholar 

  • Lozano JG, Guerrero-Lebrero MP, Yasuhara A, Okinishi E, Zhang S, Humphreys CJ, Galindo PL, Hirsch PB, Nellist PD (2014) Observation of depth-dependent atomic displacements related to dislocations in GaN by optical sectioning in the STEM. J Phys Conf Ser 522:012048

    Article  Google Scholar 

  • Merkle KL (1994) Atomic-structure of grain-boundaries. J Phys Chem Solids 55:991–1005

    Article  Google Scholar 

  • Nye JF (1957) Physical properties of crystals. Clarendon Press, Oxford

    Google Scholar 

  • Paulauskas T, Buurma C, Colegrove E, Stafford B, Guo Z, Chan MKY, Sun C, Kim MJ, Sivananthan S, Klie RF (2014) Atomic scale study of polar Lomer-Cottrell and Hirth lock dislocation cores in CdTe. Acta Cryst A70:524–531

    Google Scholar 

  • Randle V (1993) The measurement of grain boundary geometry. CRC Press, Boca Raton

    Google Scholar 

  • Ray ILF, Cockayne DJ (1971) Dissociation of dislocations in silicon. Proc R Soc Lond Ser A 325:543

    Article  Google Scholar 

  • Rittner JD, Seidman DN (1996) <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys Rev B 54:6999–7015

    Article  Google Scholar 

  • Rouvière JL, Prestat E, Bayle-Guillemaud P, Hertog MD, Bougerol C, Cooper D, Zuo J (2013) Advanced semiconductor characterization with aberration corrected electron microscopes. J Phys Conf Ser 471:012001

    Article  Google Scholar 

  • Saldin DK, Whelan MJ (1979) Construction of displacement-fields of dislocation loops and stacking-fault tetrahedra from angular dislocation segments. Philos T R Soc A 292:513–521

    Article  Google Scholar 

  • Schober T, Balluffi RW (1970) Quantitative observation of misfit dislocation arrays in low and high angle twist grain boundaries. Philos Mag 21:109

    Article  Google Scholar 

  • Spence JCH (1983) High-energy transmission electron-diffraction and imaging studies of the silicon(111) 7x7 surface-structure. Ultramicroscopy 11:117–124

    Article  Google Scholar 

  • Spence JCH (1992) Electron channelling. In: Cowley JM (ed) Techniques of electron diffraction, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Spence JCH (2007) Experimental studies of dislocation core defects. In: Nabarro FRN, Hirth JP (eds) Dislocations in solids. Elsevier, Amsterdam

    Google Scholar 

  • Sturkey L (1957) The use of electron-diffraction intensities in structure determination. Acta Crystallogr 10:858

    Google Scholar 

  • Sutton AP, Balluffi RW (1997) Interfaces in crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  • Tan TY, Hwang JCM, Goodhew PJ, Balluffi RW (1976) Preparation and applications of thin-film specimens containing grain-boundaries of controlled geometry. Thin Solid Films 33:1–11

    Article  Google Scholar 

  • Tanaka M (1986) Conventional transmission-electron-microscopy techniques in convergent-beam electron diffraction. J Electron Microsc 35:314–323

    Google Scholar 

  • Tanaka M, Terauchi M, Kaneyama T (1988) Convergent beam electron diffraction II. JEOL Company, Tokyo

    Google Scholar 

  • Tanaka M, Terauchi M, Tsuda K (1994) Convergent beam electron diffraction III. JEOL Company, Tokyo

    Google Scholar 

  • Tanishiro Y, Takayanagi K, Yagi K (1986) Observation of lattice fringes of the Si(111)-7x7 structure by reflection electron-microscopy. J Microsc 142:211–221

    Article  Google Scholar 

  • TEMACI, http://www.Materials.Ox.Ac.Uk/research/rippublications/temaci.Html

  • Thompson K, Flaitz PL, Ronsheim P, Larson DJ, Kelly TF (2007) Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317:1370–1374

    Article  Google Scholar 

  • Wang R, Wen J (1989) Effects of a stacking fault on higher-order diffraction fringes. Acta Cryst A45:428–431

    Article  Google Scholar 

  • Yang H, Lozano JG, Pennycook TJ, Jones L, Hirsch PB, Nellist PD (2015) Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. Nat Commun 6:7266

    Article  Google Scholar 

  • Yoffe EH (1960) The angular dislocation. Philos Mag 5:161–175

    Article  Google Scholar 

  • Zhang ZL, Sigle W, Ruhle M (2002) Atomic and electronic characterization of the a 100 dislocation core in SrTiO3. Phys Rev B 66:094108

    Article  Google Scholar 

  • Zhang ZL, Sigle W, Phillipp F, Ruhle M (2003) Direct atom-resolved imaging of oxides and their grain boundaries. Science 302:846–849

    Article  Google Scholar 

  • Zhou Z, Jenkins ML, Dudarev SL, Sutton AP, Kirk MA (2006) Simulations of weak-beam diffraction contrast images of dislocation loops by the many-beam Howie-Basinski equations. Philos Mag 86:4851–4881

    Article  Google Scholar 

  • Zuo J-M, Shah AB, Kim H, Meng Y, Gao W, Rouviére J-L (2014) Lattice and strain analysis of atomic resolution Z-contrast images based on template matching. Ultramicroscopy 136:50–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Min Zuo or John C. H. Spence .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zuo, J.M., Spence, J.C.H. (2017). Imaging and Characterization of Crystal Defects. In: Advanced Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6607-3_15

Download citation

Publish with us

Policies and ethics