Skip to main content

Atomic Resolution Electron Imaging

  • Chapter
  • First Online:
Advanced Transmission Electron Microscopy

Abstract

This chapter introduces the principles of high-resolution electron microscopy (HREM) and scanning transmission electron microscopy (STEM). These are the two major techniques for atomic resolution imaging of nanostructures, certain types of crystal defects and interfaces, as well as metrology in electronic and magnetic devices when atomic resolution is needed. In STEM, atomic resolution imaging using an annular dark-field detector can be combined with analytical techniques, such as energy-loss spectroscopy (EELS, which gives similar information to soft X-ray absorption spectroscopy), energy dispersive X-ray spectroscopy (EDS), and nanodiffraction, for composition and crystallographic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ade G (1977) Incoherent imaging in scanning-transmission electron-microscope (STEM). Optik 49:113–116

    Google Scholar 

  • Allpress JG, Sanders JV (1973) The direct observation of the structure of real crystals by lattice imaging. J Appl Cryst 6:165–190

    Article  Google Scholar 

  • Boothroyd CB (1998) Why don’t high-resolution simulations and images match? J Microsc 190:99–108

    Google Scholar 

  • Boothroyd CB, Dunin-Borkowski RE (2004) The contribution of phonon scattering to high-resolution images measured by off-axis electron holography. Ultramicroscopy 98(2–4):115–133

    Article  Google Scholar 

  • Buxton BF, Tremewan PT (1980) Atomic-string approximation in cross-grating high-energy electron-diffraction.I. Dispersion surface and Bloch waves. Acta Cryst A 36:304–315

    Article  Google Scholar 

  • Buxton BF, Loveluck JE, Steeds JW (1978) Bloch waves and their corresponding atomic and molecular-orbitals in high-energy electron-diffraction. Philos Mag A 38:259–278

    Article  Google Scholar 

  • Cowley JM (1959) The electron-optical imaging of crystal lattices. Acta Crystallogr 12:367

    Article  Google Scholar 

  • Cowley JM (1976) Scanning-transmission electron-microscopy of thin specimens. Ultramicroscopy 2:3–16

    Article  Google Scholar 

  • Cowley JM (1979) Adjustment of a STEM instrument by use of shadow images. Ultramicroscopy 4:413–418

    Article  Google Scholar 

  • Cowley JM (1995) Diffaction physics, 3rd edn. Elsevier Science, NL

    Google Scholar 

  • Cowley JM, Moodie AF (1957a) Fourier images: II—the out-of-focus patterns. Proc Phys Soc B 70:497

    Article  Google Scholar 

  • Cowley JM, Moodie AF (1957b) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619

    Article  Google Scholar 

  • Cowley JM, Moodie AF (1960) Fourier images IV: the phase grating. Proc Phys Soc 76:378

    Article  Google Scholar 

  • Crewe AV (1966) Scanning electron microscopes—is high resolution possible. Science 154:729–738

    Article  Google Scholar 

  • Crewe AV, Wall J, Langmore J (1970) Visibility of single atoms. Science 168:1338

    Article  Google Scholar 

  • Crewe AV, Langmore JP, Issacson MS (1975) Resolution and contrast in the scanning transmission electron microscope. In: Siegel BM, Beaman DR (eds) Physical aspects of electron microscopy and microbeam analysis. Wiley, New York

    Google Scholar 

  • D’Alfonso AJ, Findlay SD, Oxley MP, Pennycook SJ, Van Benthem K, Allen LJ (2007) Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108:17–28

    Article  Google Scholar 

  • Dellby N, Krivanek OL, Nellist PD, Batson PE, Lupini AR (2001) Progress in aberration-corrected scanning transmission electron microscopy. J Electr Microsc 50:177–185

    Google Scholar 

  • Einspahr JJ, Voyles PM (2006) Prospects for 3d, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106:1041–1052

    Article  Google Scholar 

  • Fertig J, Rose H (1977) Reflection on partial coherence in electron-microscopy. Ultramicroscopy 2:269–279

    Article  Google Scholar 

  • Fertig J, Rose H (1981) Resolution and contrast of crystalline objects in high-resolution scanning-transmission electron-microscopy. Optik 59:407–429

    Google Scholar 

  • Gao WP, Sivaramakrishnan S, Wen JG, Zuo JM (2015) Direct observation of interfacial Au atoms on TiO2 in three dimensions. Nano Lett 15:2548–2554

    Article  Google Scholar 

  • Gibson JM, Howie A (1979) Investigation of local-structure and composition in amorphous solids by high-resolution electron-microscopy. Chem Scr 14:109–116

    Google Scholar 

  • Haider M, Uhlemann S, Zach J (2000) Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81:163–175

    Article  Google Scholar 

  • Haider M, Muller H, Uhlemann S (2008) Present and future hexapole aberration correctors for high-resolution electron microscopy. Adv Imaging Electron Phys 153:43–119

    Google Scholar 

  • Haine ME, Mulvey T (1952) The formation of the diffraction image with electrons in the Gabor diffraction microscope. J Opt Soc Am 42:763–773

    Article  Google Scholar 

  • Hashimoto A, Shimojo M, Mitsuishi K, Takeguchi M (2009) Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106:086101

    Article  Google Scholar 

  • Hillyard S, Silcox J (1993) Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52:325–334

    Article  Google Scholar 

  • Hillyard S, Silcox J (1995) Detector geometry, thermal diffuse-scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58:6–17

    Article  Google Scholar 

  • Howie A (1966) Diffraction channelling of fast electrons and positrons in crystals. Philos Mag 14:223–237

    Article  Google Scholar 

  • Howie A (1979) Image-contrast and localized signal selection techniques. J Microsc 117:11–23

    Article  Google Scholar 

  • Iijima S (1971) High-resolution electron microscopy of crystal lattice of titanium-niobium oxide. J Appl Phys 42:5891

    Article  Google Scholar 

  • Ishizuka K (1982) Multislice formula for inclined illumination. Acta Cryst A 38:773–779

    Article  Google Scholar 

  • Ishizuka K (2002) A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90:71–83

    Article  Google Scholar 

  • Ishizuka K, Uyeda N (1977) New theoretical and practical approach to multislice method. Acta Cryst A 33:740–749

    Article  Google Scholar 

  • Jesson DE, Pennycook SJ (1993) Incoherent imaging of thin specimens using coherently scattered electrons. P Roy Soc Lond A 441:261–281

    Article  Google Scholar 

  • Jia CL, Lentzen M, Urban K (2003) Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299:870–873

    Article  Google Scholar 

  • Kirkland EJ (2010) Advanced computing in electron microscopy, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-angstrom electron beams. Ultramicroscopy 78:1–11

    Article  Google Scholar 

  • Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92:233–242

    Article  Google Scholar 

  • Lin JA, Cowley JM (1986a) Calibration of the operating parameters for an HB5 STEM instrument. Ultramicroscopy 19:31–42

    Article  Google Scholar 

  • Lin JA, Cowley JM (1986b) Reconstruction from in-line electron holograms by digital processing. Ultramicroscopy 19(2):179–190

    Article  Google Scholar 

  • Loane RF, Kirkland EJ, Silcox J (1988) Visibility of single heavy-atoms on thin crystalline silicon in simulated annular dark-field STEM images. Acta Cryst A 44:912–927

    Article  Google Scholar 

  • Lupini AR (2011) The electron ronchigram. In: S Pennycook, P Nellist (eds) Scanning transmission electron microscopy. Springer, New York

    Google Scholar 

  • Malacara D (1978) Optical shop testing. Wiley, New York

    Google Scholar 

  • Menter JW (1956) The direct study by electron microscopy of crystal lattices and their imperfections. Proc Roy Soc Lond Ser A 236:119

    Article  Google Scholar 

  • Mory C, Colliex C, Cowley JM (1987) Optimum defocus for STEM imaging and microanalysis. Ultramicroscopy 21:171–177

    Article  Google Scholar 

  • Müller H, Uhlemann S, Hartel P, Haider M (2006) Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Micros Microanal 12:442–455

    Article  Google Scholar 

  • Nellist PD, McCallum BC, Rodenburg JM (1995) Resolution beyond the information limit in transmission electron-microscopy. Nature 374:630–632

    Article  Google Scholar 

  • Nellist PD, Cosgriff EC, Behan G, Kirkland AI (2008) Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Micros Microanal 14:82–88

    Article  Google Scholar 

  • Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617

    Google Scholar 

  • O’Keefe MA, Sanders JV (1975) N-beam. Lattice images, VI. Degradation of image resolution by a combination of incident-beam divergence and spherical aberration. Acta Crystallogr A 31:307–310

    Article  Google Scholar 

  • Peng LM, Dudarev SL, Whelan MJ (2004) High energy electron diffraction and microscopy. Oxford University Press, Oxford

    Google Scholar 

  • Pennycook SJ, Boatner LA (1988) Chemically sensitive structure-imaging with a scanning-transmission electron-microscope. Nature 336:565–567

    Article  Google Scholar 

  • Pennycook SJ, Jesson DE (1991) High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37:14–38

    Article  Google Scholar 

  • Pennycook S, Nellist P (eds) (2011) Scanning transmission electron microscopy, imaging and analysis. Springer, New York

    Google Scholar 

  • Pennycook SJ, Berger SD, Culbertson RJ (1986) Elemental mapping with elastically scattered electrons. J Microsc 144:229–249

    Article  Google Scholar 

  • Reimer L, Kohl H (2008) Transmission electron microscopy, 4th edn. Springer, Berlin

    Google Scholar 

  • Ronchi V (1964) Forty years of history of a grating interferometer. Appl Opt 3:437–451

    Article  Google Scholar 

  • Sawada H, Sasaki T, Naruse M, Honda T, Hambridge P, Hartel P, Haider M, Hetherington C, Doole R, Kirkland A, Hutchison J, Titchmarsh J, Cockayne D (2010) Higher-order aberration corrector for an image-forming system in a transmission electron microscope. Ultramicroscopy 110:958–961

    Article  Google Scholar 

  • Scherzer O (1949) The theoretical resolution limit of the electron microscope. J Appl Phys 20:20–29

    Article  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Inst Radio Eng 37:10

    Google Scholar 

  • Spence JCH (1988) Experimental high-resolution electron microscopy. Oxford University Press, New York

    Google Scholar 

  • Spence JCH (1992) Electron channelling. In: Cowley JM (ed) Techniques of electron diffraction, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Spence JCH (2013) High resolution electron microscopy, 4th edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Spence JCH, Cowley JM (1978) Lattice imaging in STEM. Optik 50:129–142

    Google Scholar 

  • Spence JCH, Zuo JM (1988) Large dynamic-range, parallel detection system for electron-diffraction and imaging. Rev Sci Instrum 59:2102–2105

    Article  Google Scholar 

  • Spence JCH, Zuo JM (1992) Electron microdiffraction. Plenum, New York

    Book  Google Scholar 

  • Treacy MMJ, Gibson JM (1993) Coherence and multiple-scattering in “Z-contrast” images. Ultramicroscopy 52:31–53

    Article  Google Scholar 

  • Treacy MMJ, Howie A, Wilson CJ (1978) Z-contrast of platinum and palladium catalysts. Philos Mag A 38:569–585

    Article  Google Scholar 

  • Vincent R, Bird DM, Steeds JW (1984) Structure of AuGeAs determined by convergent-beam electron-diffraction. I. Derivation of basic structure. Philos Mag A 50:745–763

    Google Scholar 

  • Wen JG, Mabon J, Lei C, Burdin S, Sammann E, Petrov I, Shah AB, Chobpattana VG, Zhang J, Ran K, Zuo JM, Mishina S, Aoki T (2010) The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois. Micros Microanal 16:183–193

    Article  Google Scholar 

  • Zaluzec NJ (2003) The scanning confocal electron microscope. Microscopy-Today 6:8–12

    Google Scholar 

  • Zuo JM, Spence JCH (1993) Coherent electron nanodiffraction from perfect and imperfect crystals. Philos Mag A 68:1055–1078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Min Zuo or John C. H. Spence .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zuo, J.M., Spence, J.C.H. (2017). Atomic Resolution Electron Imaging. In: Advanced Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6607-3_14

Download citation

Publish with us

Policies and ethics