Skip to main content

Introduction and Historical Background

  • Chapter
  • First Online:
Advanced Transmission Electron Microscopy
  • 6203 Accesses

Abstract

The electron is a negatively charged subatomic particle with elemental charge e = 1.60218 × 10−19 C and mass m e = 9.10938 × 10−31 kg. The electron was discovered by British physicist J.J. Thomson in 1897. At the Cavendish Laboratory, Cambridge University, J.J. Thomson was experimenting with a cathode ray tube (CRT), investigating a long-standing puzzle known as “cathode rays.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Botton G (ed) (2007) Analytical electron microscopy. Science of microscopy, Springer, New York

    Google Scholar 

  • Busch H (1927) On the operation of the concentration coil in a Braun tube. Arch Electrotech 18:583

    Article  Google Scholar 

  • Cowley JM (1993) Configured detectors for STEM imaging of thin specimens. Ultramicroscopy 49:4–13

    Article  Google Scholar 

  • Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Goodman P (ed) (1981) Fifty years of electron diffraction. D. Reidel. Dordrecht, Holland, IUCr

    Google Scholar 

  • Ichimiya A, Cohen PI (2004) Reflection high energy electron diffraction. Cambridge University Press

    Google Scholar 

  • Kim T, Kim S, Olson E, Zuo JM (2008) In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors. Ultramicroscopy 108:613–618

    Article  Google Scholar 

  • Knoll M, Ruska E (1932) Das elektronenmikroskop. Zeitschrift Fur Physik 78:318–339

    Article  Google Scholar 

  • LaGrange T, Campbell GH, Reed B, Taheri M, Pesavento JB, Kim JS, Browning ND (2008) Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108:1441–1449

    Article  Google Scholar 

  • MacGillavry CH (1940) Examination of the dynamic theory of electron diffraction on lattice. Physica 7:329–343

    Article  Google Scholar 

  • McCartney MR, Gajdardziskajosifovska M (1994) Absolute measurement of normalized thickness, t/λi, from off-axis electron holography. Ultramicroscopy 53:283–289

    Article  Google Scholar 

  • Mollenstedt G (1989) My early work on convergent-beam electron-diffraction. Phys Status Solidi A 116:13–22

    Article  Google Scholar 

  • Pennycook S, Nellist P (eds) (2011) Scanning transmission electron microscopy, imaging and analysis. Springer, New York

    Google Scholar 

  • Reimer L, Kohl H (2008) Transmission electron microscopy (4th). Springer, Berlin

    Google Scholar 

  • Riecke WD, Ruska E (1966) A 100 kV transmission electron microscope with single-field condenser objective. VI. Int. Congress for Electron Microscopy, Kyoto, Japan

    Google Scholar 

  • Ruska E (1987) The development of the electron-microscope and of electron-microscopy. Rev Mod Phys 59:627–638

    Article  Google Scholar 

  • Sanchez SI, Small MW, Sivaramakrishnan S, Wen JG, Zuo JM, Nuzzo RG (2010) Visualizing materials chemistry at atomic resolution. Anal Chem 82:2599

    Article  Google Scholar 

  • Thomson GP, Reid A (1927) Diffraction of cathode rays by a thin film. Nature 119:890

    Article  Google Scholar 

  • Tonomura A, Matsuda T, Endo J, Todokoro H, Komoda T (1979) Development of a field-emission electron-microscope. J Electron Microsc 28:1–11

    Google Scholar 

  • von Ardenne M (1940) About a universal electron microscope for brightfield, darkfield and stereo operation. Z Physik 115:339–368

    Article  Google Scholar 

  • von Ardenne, M. (1985). On the history of scanning electron-microscopy, of the electron-microprobe, and of early contributions to transmission electron-microscopy. In: Hawkes PW (ed) The beginnings of electron microscopy, Elsevier

    Google Scholar 

  • Warren BE (1990) X-ray diffraction, Reprint edn. Dover Publications

    Google Scholar 

  • Williams DB, Carter BC (2009) Transmission electron microscopy, a textbook for materials science (2nd Editiom). Springer, New York

    Google Scholar 

  • Zewail AH (2006) 4d ultrafast electron diffraction, crystallography, and microscopy. Annu Rev Phys Chem 57:65–103

    Article  Google Scholar 

  • Zuo JM (1992) Automated lattice-parameter measurement from HOLZ lines and their use for the measurement of oxygen-content in YBa2Cu3O7-Δ from nanometer-sized region. Ultramicroscopy 41:211–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Min Zuo or John C. H. Spence .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zuo, J.M., Spence, J.C.H. (2017). Introduction and Historical Background. In: Advanced Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6607-3_1

Download citation

Publish with us

Policies and ethics