Skip to main content

Scoring of Sleep-Related Breathing Events

  • Chapter
  • First Online:
Sleep Disorders Medicine

Abstract

Various patterns of respiratory abnormalities characterize specific sleep-disordered breathing syndromes. Scoring rules are relatively rigid approaches to maximize standardization, but result in a trade-off by discarding both clinically and pathophysiologically relevant patterns. Data for scoring are obtained from polysomnography, cardiopulmonary recordings, and therapy devices. In the near future, consumer-wearable devices should be expected to provide respiratory data. Scoring can usefully benefit from automated approaches, which can at least complement manual/visual scoring. Besides quantitative estimates, qualitative approaches can provide phenotyping information and enable more precise therapy, especially by differentiating obstructive diseases from hypoventilation or high loop gain conditions. Several conceptual approaches improve the sophistication of scoring, including recognizing REM/NREM differences, event timing and cycle length, duty cycle and expiratory duration variability, pathological pressure cycling associated with adaptive ventilation, and considering a range of associated features besides conventional arousals to improve quantification of respiratory events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The AASM Manual for the Scoring of Sleep and Associated Events. http://www.aasmnet.org/scoringmanual/default.aspx

  2. Parrino L, Grassi A, Milioli G (2014) Cyclic alternating pattern in polysomnography: what is it and what does it mean? Curr Opin Pulm Med 20(6):533–541

    Article  PubMed  Google Scholar 

  3. Thomas RJ et al (2014) Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep. Sleep Med 15(1):125–131

    Article  PubMed  Google Scholar 

  4. Azarbarzin A, Ostrowski M, Younes M, Keenan BT, Pack AI, Staley B, Kuna ST (2015) Arousal responses during overnight polysomnography and their reproducibility in healthy young adults. Sleep 38(8):1313–1321

    Google Scholar 

  5. Thomas RJ (2003) Arousals in sleep-disordered breathing: patterns and implications. Sleep 26(8):1042–1047

    Article  PubMed  Google Scholar 

  6. Cash SS et al (2009) The human K-complex represents an isolated cortical down-state. Science 324(5930):1084–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas RJ (2014) Alternative approaches to treatment of Central Sleep Apnea. Sleep Med Clin 9(1):87–104

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jordan AS et al (2009) Airway dilator muscle activity and lung volume during stable breathing in obstructive sleep apnea. Sleep 32(3):361–368

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chervin RD et al (2004) Method for detection of respiratory cycle-related EEG changes in sleep-disordered breathing. Sleep 27(1):110–115

    Article  PubMed  Google Scholar 

  10. Chervin RD, Shelgikar AV, Burns JW (2012) Respiratory cycle-related EEG changes: response to CPAP. Sleep 35(2):203–209

    PubMed  PubMed Central  Google Scholar 

  11. Eckert DJ, Younes MK (2014) Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. J Appl Physiol (1985) 116(3):302–313

    Google Scholar 

  12. Azarbarzin A et al (2014) Relationship between arousal intensity and heart rate response to arousal. Sleep 37(4):645–653

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kara T, Narkiewicz K, Somers VK (2003) Chemoreflexes—physiology and clinical implications. Acta Physiol Scand 177(3):377–384

    Article  CAS  PubMed  Google Scholar 

  14. Sato M et al (1992) Augmented hypoxic ventilatory response in men at altitude. J Appl Physiol (1985) 73(1)101–107

    Google Scholar 

  15. Gerst DG 3rd et al (2011) The hypoxic ventilatory response and ventilatory long-term facilitation are altered by time of day and repeated daily exposure to intermittent hypoxia. J Appl Physiol (1985) 110(1):15–28

    Google Scholar 

  16. Gilmartin G et al (2010) Treatment of positive airway pressure treatment-associated respiratory instability with enhanced expiratory rebreathing space (EERS). J Clin Sleep Med 6(6):529–538

    PubMed  PubMed Central  Google Scholar 

  17. Wickramasinghe H, Anholm JD (1999) Sleep and breathing at high altitude. Sleep Breath 3(3):89–102

    Article  PubMed  Google Scholar 

  18. Nakayama H et al (2002) Effect of ventilatory drive on carbon dioxide sensitivity below eupnea during sleep. Am J Respir Crit Care Med 165(9):1251–1260

    Article  PubMed  Google Scholar 

  19. Lombardi C et al (2013) High-altitude hypoxia and periodic breathing during sleep: gender-related differences. J Sleep Res 22(3):322–330

    Article  PubMed  Google Scholar 

  20. Xie A et al (1995) Hypocapnia and increased ventilatory responsiveness in patients with idiopathic central sleep apnea. Am J Respir Crit Care Med 152(6 Pt 1):1950–1955

    Article  CAS  PubMed  Google Scholar 

  21. Xie A et al (1994) Interaction of hyperventilation and arousal in the pathogenesis of idiopathic central sleep apnea. Am J Respir Crit Care Med 150(2):489–495

    Article  CAS  PubMed  Google Scholar 

  22. Terzano MG et al (1985) The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8(2):137–145

    Article  CAS  PubMed  Google Scholar 

  23. Parrino L et al (1997) Multidrug comparison (lorazepam, triazolam, zolpidem, and zopiclone) in situational insomnia: polysomnographic analysis by means of the cyclic alternating pattern. Clin Neuropharmacol 20(3):253–263

    Article  CAS  PubMed  Google Scholar 

  24. Terzano MG et al (1995) Changes of cyclic alternating pattern (CAP) parameters in situational insomnia under brotizolam and triazolam. Psychopharmacology 120(3):237–243

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y et al (2012) The effect of zolpidem on sleep quality, stress status, and nondipping hypertension. Sleep Med 13(3):263–268

    Article  PubMed  Google Scholar 

  26. Mooney AM et al (2012) Relative prolongation of inspiratory time predicts high versus low resistance categorization of hypopneas. J Clin Sleep Med 8(2):177–185

    PubMed  PubMed Central  Google Scholar 

  27. Quadri S, Drake C, Hudgel DW (2009) Improvement of idiopathic central sleep apnea with zolpidem. J Clin Sleep Med 5(2):122–129

    PubMed  PubMed Central  Google Scholar 

  28. Hanly PJ et al (1989) Respiration and abnormal sleep in patients with congestive heart failure. Chest 96(3):480–488

    Article  CAS  PubMed  Google Scholar 

  29. Walker JM et al (2007) Chronic opioid use is a risk factor for the development of central sleep apnea and ataxic breathing. J Clin Sleep Med 3(5):455–461

    PubMed  PubMed Central  Google Scholar 

  30. Thomas RJ et al (2007) Nocturnal hypoxia exposure with simulated altitude for 14 days does not significantly alter working memory or vigilance in humans. Sleep 30(9):1195–1203

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rao H, Thomas RJ (2013) Complex sleep apnea. Curr Treat Options Neurol 15(6):677–691

    Article  PubMed  Google Scholar 

  32. Charpentier A et al (2010) Sleep quality and apnea in stable methadone maintenance treatment. Subst Use Misuse 45(9):1431–1434

    Article  PubMed  Google Scholar 

  33. Wang D et al (2005) Central sleep apnea in stable methadone maintenance treatment patients. Chest 128(3):1348–1356

    Article  PubMed  Google Scholar 

  34. Javaheri S, Dempsey JA (2013) Central sleep apnea. Compr Physiol 3(1):141–163

    CAS  PubMed  Google Scholar 

  35. Eckert DJ et al (2007) Central sleep apnea: pathophysiology and treatment. Chest 131(2):595–607

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dempsey JA (2005) Crossing the apnoeic threshold: causes and consequences. Exp Physiol 90(1):13–24

    Article  PubMed  Google Scholar 

  37. Iber C et al (1986) A possible mechanism for mixed apnea in obstructive sleep apnea. Chest 89(6):800–805

    Article  CAS  PubMed  Google Scholar 

  38. Bulow K (1963) Respiration and wakefulness in man. Acta Physiol Scand Suppl 209:1–110

    CAS  PubMed  Google Scholar 

  39. Rodman JR et al (2001) Carotid body denervation in dogs: eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol (1985) 91(1):328–335

    Google Scholar 

  40. Meza S et al (1998) Susceptibility to periodic breathing with assisted ventilation during sleep in normal subjects. J Appl Physiol (1985) 85(5):1929–1940

    Google Scholar 

  41. Skatrud JB, Dempsey JA (1983) Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. J Appl Physiol Respir Environ Exerc Physiol 55(3):813–822

    CAS  PubMed  Google Scholar 

  42. Solin P et al (1998) Effects of cardiac dysfunction on non-hypercapnic central sleep apnea. Chest 113(1):104–110

    Article  CAS  PubMed  Google Scholar 

  43. Hall MJ et al (1996) Cycle length of periodic breathing in patients with and without heart failure. Am J Respir Crit Care Med 154(2 Pt 1):376–381

    Article  CAS  PubMed  Google Scholar 

  44. Sands SA et al (2011) Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 184(9):1067–1075

    Article  PubMed  Google Scholar 

  45. Badr MS (1996) Effect of ventilatory drive on upper airway patency in humans during NREM sleep. Respir Physiol 103(1):1–10

    Article  CAS  PubMed  Google Scholar 

  46. Badr MS et al (1995) Pharyngeal narrowing/occlusion during central sleep apnea. J Appl Physiol (1985) 78(5):1806–1815

    Google Scholar 

  47. Sankri-Tarbichi AG, Rowley JA, Badr MS (2009) Expiratory pharyngeal narrowing during central hypocapnic hypopnea. Am J Respir Crit Care Med 179(4):313–319

    Article  PubMed  Google Scholar 

  48. Boudewyns A et al (1997) Assessment of respiratory effort by means of strain gauges and esophageal pressure swings: a comparative study. Sleep 20(2):168–170

    Article  CAS  PubMed  Google Scholar 

  49. Staats BA et al (1984) Chest wall motion in sleep apnea. Am Rev Respir Dis 130(1):59–63

    CAS  PubMed  Google Scholar 

  50. Oeverland B et al (2005) Patient discomfort in polysomnography with esophageal pressure measurements. Eur Arch Otorhinolaryngol 262(3):241–245

    Article  PubMed  Google Scholar 

  51. Morrell MJ et al (1995) The assessment of upper airway patency during apnea using cardiogenic oscillations in the airflow signal. Sleep 18(8):651–658

    Article  CAS  PubMed  Google Scholar 

  52. Randerath WJ, Treml M, Priegnitz C, Stieglitz S, Hagmeyer L, Morgenstern C (2013) Evaluation of a noninvasive algorithm for differentiation of obstructive and central hypopneas. Sleep 36(3):363–368. doi:10.5665/sleep.2450. PubMed PMID: 23450252; PubMed Central PMCID: PMC3571737)

  53. Chowdhuri S et al (2010) Sustained hyperoxia stabilizes breathing in healthy individuals during NREM sleep. J Appl Physiol (1985) 109(5):p. 1378–1383

    Google Scholar 

  54. Ratnavadivel R et al (2009) Marked reduction in obstructive sleep apnea severity in slow wave sleep. J Clin Sleep Med 5(6):519–524

    PubMed  PubMed Central  Google Scholar 

  55. Morishima Y et al (2007) Sleep stage determines the expression pattern of sleep apneas. Intern Med 46(1):45–48

    Article  PubMed  Google Scholar 

  56. Zielinski J et al (2000) The quality of sleep and periodic breathing in healthy subjects at an altitude of 3,200 m. High Altitude Med Biol 1(4):331–336

    Article  CAS  Google Scholar 

  57. Zhou XS et al (2000) Effect of gender on the development of hypocapnic apnea/hypopnea during NREM sleep. J Appl Physiol (1985) 89(1):192–199

    Google Scholar 

  58. Gilmartin GS, Daly RW, Thomas RJ (2005) Recognition and management of complex sleep-disordered breathing. Curr Opin Pulm Med 11(6):485–493

    Article  PubMed  Google Scholar 

  59. Eckert DJ et al (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188(8):996–1004

    Article  PubMed  PubMed Central  Google Scholar 

  60. Younes M (2003) Contributions of upper airway mechanics and control mechanisms to severity of obstructive apnea. Am J Respir Crit Care Med 168(6):645–658

    Article  PubMed  Google Scholar 

  61. Xie A et al (2011) The heterogeneity of obstructive sleep apnea (predominant obstructive vs pure obstructive apnea). Sleep 34(6):745–750

    Article  PubMed  PubMed Central  Google Scholar 

  62. Morgenthaler TI et al (2006) Complex sleep apnea syndrome: is it a unique clinical syndrome? Sleep 29(9):1203–1209

    Article  PubMed  Google Scholar 

  63. Ruttanaumpawan P et al (2009) Effect of continuous positive airway pressure on sleep structure in heart failure patients with central sleep apnea. Sleep 32(1):91–98

    PubMed  PubMed Central  Google Scholar 

  64. Thomas RJ (2014) Carbon dioxide in sleep medicine: the next frontier for measurement, manipulation, and research. J Clin Sleep Med 10(5):523–526

    PubMed  PubMed Central  Google Scholar 

  65. Javaheri S, Brown LK, Randerath WJ (2014) Clinical applications of adaptive servoventilation devices: part 2. Chest 146(3):858–868

    Article  PubMed  Google Scholar 

  66. Javaheri S, Brown LK, Randerath WJ (2014) Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest 146(2):514–523

    Article  PubMed  Google Scholar 

  67. Teschler H et al (2001) Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-Stokes respiration in heart failure. Am J Respir Crit Care Med 164(4):614–619

    Article  CAS  PubMed  Google Scholar 

  68. Koyama T et al (2013) Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity in patients with heart failure. Eur J Heart Fail 15:902–909

    Google Scholar 

  69. Koyama T et al (2011) Short-term prognosis of adaptive servo-ventilation therapy in patients with heart failure. Circ J 75(3):710–712

    Article  PubMed  Google Scholar 

  70. Iwaya S et al (2014) Suppressive effects of adaptive servo-ventilation on ventricular premature complexes with attenuation of sympathetic nervous activity in heart failure patients with sleep-disordered breathing. Heart Vessels 29:470–477

    Google Scholar 

  71. D’Elia E et al (2013) Adaptive servo ventilation reduces central sleep apnea in chronic heart failure patients: beneficial effects on autonomic modulation of heart rate. J Cardiovasc Med (Hagerstown) 14(4):296–300

    Article  Google Scholar 

  72. Randerath WJ et al (2012) Long-term auto-servoventilation or constant positive pressure in heart failure and coexisting central with obstructive sleep apnea. Chest 142(2):440–447

    Article  CAS  PubMed  Google Scholar 

  73. Javaheri S et al (2011) The performance of two automatic servo-ventilation devices in the treatment of central sleep apnea. Sleep 34(12):1693–1698

    Article  PubMed  PubMed Central  Google Scholar 

  74. Arzt M et al (2013) Auto-servo ventilation in heart failure with sleep apnea—a randomized controlled trial. Eur Respir J 42:1244–1254.

    Google Scholar 

  75. Oldenburg O et al (2013) Trilevel adaptive servoventilation for the treatment of central and mixed sleep apnea in chronic heart failure patients. Sleep Med 14(5):422–427

    Article  PubMed  Google Scholar 

  76. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho MP, Erdmann E, Levy P, Simonds AK, Somers VK, Zannad F, Teschler H (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 373(12):1095–1105

    Google Scholar 

  77. Bresler M et al (2008) Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry. Physiol Meas 29(5):571–584

    Article  PubMed  Google Scholar 

  78. Collop NA et al (2011) Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation. J Clin Sleep Med 7(5):531–548

    PubMed  PubMed Central  Google Scholar 

  79. Lavie P et al (2000) Peripheral arterial tonometry: a novel and sensitive non-invasive monitor of brief arousals during sleep. Isr Med Assoc J 2(3):246–247

    CAS  PubMed  Google Scholar 

  80. Penzel T et al (2002) Peripheral arterial tonometry for the diagnosis of obstructive sleep apnea. Biomed Tech (Berl) 47(Suppl 1 Pt 1):315–317

    Article  Google Scholar 

  81. Thomas RJ et al (2007) Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. Sleep 30(12):1756–1769

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schwab RJ et al (2013) An official American Thoracic Society statement: continuous positive airway pressure adherence tracking systems. The optimal monitoring strategies and outcome measures in adults. Am J Respir Crit Care Med 188(5):613–620

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez-Bermejo J et al (2012) Proposal for a systematic analysis of polygraphy or polysomnography for identifying and scoring abnormal events occurring during non-invasive ventilation. Thorax 67(6):546–552

    Article  CAS  PubMed  Google Scholar 

  84. Rabec C et al (2011) Ventilator modes and settings during non-invasive ventilation: effects on respiratory events and implications for their identification. Thorax 66(2):170–178

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Joseph Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, R.J. (2017). Scoring of Sleep-Related Breathing Events. In: Chokroverty, S. (eds) Sleep Disorders Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6578-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6578-6_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6576-2

  • Online ISBN: 978-1-4939-6578-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics