Skip to main content

Neuroimaging in Normal and Abnormal Sleep

  • Chapter
  • First Online:
  • 5903 Accesses

Abstract

Functional neuroimaging studies have provided key insights into the neural causes, consequences, and correlates of sleep disorders. Brain imaging studies during normal sleep have revealed dynamic neural activity, characteristically different from wakefulness and correlated with electroencephalographic sleep oscillations. Sleep deprivation causes activations and deactivations in several brain regions, and white matter densities predict its detrimental effect on cognitive ability. Functional neuroimaging studies in insomnia support hyperarousal theory, notably with decreased inhibition shown during the transition from wakefulness to sleep. Structural findings in insomnia are less consistent, with alterations detected in the hippocampus, prefrontal cortex, and rostral anterior cingulate cortex. In narcoleptic patients, functional and structural abnormalities are found mainly in the hypothalamus, supporting a hypocretinergic dysfunction, whereas altered limbic responding may relate to emotional dysregulation. Thalamic hypoperfusion seems to underlie Kleine–Levin syndrome (KLS), a type of central hypersomnia. Neuroimaging studies of obstructive sleep apnea have focused on its negative neuropsychological effects, linking them to structural alterations in the prefrontal cortex, hippocampus, parietal cortex, and white matter tracts, as well as to functional changes in the default-mode network. Only some of these changes seem reversible by treatment with continuous positive airway pressure (CPAP). In restless legs syndrome (RLS), iron depletion in the substantia nigra (SN) may interact with dopaminergic dysfunction to disturb the sensorimotor control of pain. A single case report of a sleepwalking episode demonstrated prefrontal hypoperfusion and posterior cingulate hyperperfusion. Lastly, functional and structural studies of rapid eye movement sleep behavior disorder converge on pontine abnormalities, as well as presynaptic dopamine dysfunction related to the development of synucleinopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thomas RJ, Rosen BR, Stern CE, Weiss JW, Kwong KK (2005) Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol 98(6):2226–2234 PubMed PMID: 15677733

    Google Scholar 

  2. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R et al (2000) Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 9(4):335–352 PubMed PMID: 11123521

    Article  CAS  PubMed  Google Scholar 

  3. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R et al (2003) Neural basis of alertness and cognitive performance impairments during sleepiness. II. Effects of 48 and 72 h of sleep deprivation on waking human regional brain activity. Thalamus Relat Syst 2003 (2):199–229

    Google Scholar 

  4. Drummond SP, Brown GG, Stricker JL, Buxton RB, Wong EC, Gillin JC (1999) Sleep deprivation-induced reduction in cortical functional response to serial subtraction. NEUROREPORT 10(18):3745–3748 PubMed PMID: 10716202

    Article  CAS  PubMed  Google Scholar 

  5. Desseilles M, Dang-Vu T, Schabus M, Sterpenich V, Maquet P, Schwartz S (2008) Neuroimaging insights into the pathophysiology of sleep disorders. Sleep 31(6):777–794 PubMed PMID: 18548822

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kryger MH, Roth T, Dement WC (2000) Principles and practice of sleep medicine, third edn. W.B. Saunders Company, Philadelphia, 1336 p

    Google Scholar 

  7. Steriade M, Amzica F (1998) Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1(1):1–10 PubMed PMID: 11382851

    CAS  PubMed  Google Scholar 

  8. Maquet P (2000) Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 9(3):207–231 PubMed PMID: 11012860

    Article  CAS  PubMed  Google Scholar 

  9. Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R et al (1992) Cerebral glucose utilization during stage 2 sleep in man. Brain Res 571(1):149–153 PubMed PMID: 1611488

    Article  CAS  PubMed  Google Scholar 

  10. Madsen PL, Schmidt JF, Holm S, Vorstrup S, Lassen NA, Wildschiodtz G (1991) Cerebral oxygen metabolism and cerebral blood flow in man during light sleep (stage 2). Brain Res 557(1–2):217–220 PubMed PMID: 1747754

    Article  CAS  PubMed  Google Scholar 

  11. Kjaer TW, Law I, Wiltschiotz G, Paulson OB, Madsen PL (2002) Regional cerebral blood flow during light sleep–a H(2)(15)O-PET study. J Sleep Res 11(3):201–207 PubMed PMID: 12220315

    Article  PubMed  Google Scholar 

  12. Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R et al (1990) Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-d-glucose method. Brain Res 513(1):136–143 PubMed PMID: 2350676

    Article  CAS  PubMed  Google Scholar 

  13. Madsen PL, Schmidt JF, Wildschiodtz G, Friberg L, Holm S, Vorstrup S et al (1991) Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol 70(6):2597–2601 PubMed PMID: 1885454

    CAS  PubMed  Google Scholar 

  14. Kajimura N, Uchiyama M, Takayama Y, Uchida S, Uema T, Kato M et al (1999) Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci 19(22):10065–10073 PubMed PMID: 10559414

    CAS  PubMed  Google Scholar 

  15. Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P et al (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain J Neurol 120(Pt 7):1173–1197 PubMed PMID: 9236630

    Article  Google Scholar 

  16. Maquet P, Degueldre C, Delfiore G, Aerts J, Peters JM, Luxen A et al (1997) Functional neuroanatomy of human slow wave sleep. J Neurosci 17(8):2807–2812 PubMed PMID: 9092602

    CAS  PubMed  Google Scholar 

  17. Nofzinger EA, Buysse DJ, Miewald JM, Meltzer CC, Price JC, Sembrat RC et al (2002) Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain J Neurol 125(Pt 5):1105–1115 PubMed PMID: 11960899

    Article  Google Scholar 

  18. Hofle N, Paus T, Reutens D, Fiset P, Gotman J, Evans AC et al (1997) Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci 17(12):4800–4808 PubMed PMID: 9169538

    CAS  PubMed  Google Scholar 

  19. Dang-Vu TT, Desseilles M, Laureys S, Degueldre C, Perrin F, Phillips C et al (2005) Cerebral correlates of delta waves during non-REM sleep revisited. Neuroimage 28(1):14–21 PubMed PMID: 15979343

    Article  PubMed  Google Scholar 

  20. Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13(8):3266–3283 PubMed PMID: 8340807

    CAS  PubMed  Google Scholar 

  21. Finelli LA, Borbely AA, Achermann P (2001) Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci 13(12):2282–2290 PubMed PMID: 11454032

    Article  CAS  PubMed  Google Scholar 

  22. Andersson JL, Onoe H, Hetta J, Lidstrom K, Valind S, Lilja A et al (1998) Brain networks affected by synchronized sleep visualized by positron emission tomography. J Cereb Blood Flow Metab 18(7):701–715 PubMed PMID: 9663500

    Article  CAS  PubMed  Google Scholar 

  23. Borbely AA (2001) From slow waves to sleep homeostasis: new perspectives. Arch Ital Biol 139(1–2):53–61 PubMed PMID: 11256187

    CAS  PubMed  Google Scholar 

  24. Harrison Y, Horne JA (1999) One night of sleep loss impairs innovative thinking and flexible decision making. Organ Behav Hum Decis Process 78(2):128–145 PubMed PMID: 10329298

    Article  CAS  PubMed  Google Scholar 

  25. Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J et al (2007) Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A 104(32):13164–13169 PubMed PMID: 17670944. Pubmed Central PMCID: 1941810. Epub 2007/08/03. eng

    Google Scholar 

  26. Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A et al (2008) Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci U S A 105(39):15160–15165 PubMed PMID: 18815373. Pubmed Central PMCID: 2567508. Epub 2008/09/26. eng

    Google Scholar 

  27. Eschenko O, Magri C, Panzeri S, Sara SJ (2012) Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cerebral Cortex 22(2):426–435 PubMed PMID: 21670101. Epub 2011/06/15. eng

    Google Scholar 

  28. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum Press, New York

    Book  Google Scholar 

  29. Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40(3):637–656 PubMed PMID: 2062436

    Article  CAS  PubMed  Google Scholar 

  30. Lenzi P, Zoccoli G, Walker AM, Franzini C (1999) Cerebral blood flow regulation in REM sleep: a model for flow-metabolism coupling. Arch Ital Biol 137(2–3):165–179 PubMed PMID: 10349495

    CAS  PubMed  Google Scholar 

  31. Maquet P, Peters J, Aerts J, Delfiore G, Degueldre C, Luxen A et al (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163–166 PubMed PMID: 8774879

    Article  CAS  PubMed  Google Scholar 

  32. Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770(1–2):192–201 PubMed PMID: 9372219

    Article  CAS  PubMed  Google Scholar 

  33. Braun AR, Balkin TJ, Wesensten NJ, Gwadry F, Carson RE, Varga M et al (1998) Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 279(5347):91–95 PubMed PMID: 9417032

    Article  CAS  PubMed  Google Scholar 

  34. Maquet P, Phillips C (1998) Functional brain imaging of human sleep. J Sleep Res 7(Suppl 1):42–47 PubMed PMID: 9682193

    Article  PubMed  Google Scholar 

  35. Chow HM, Horovitz SG, Carr WS, Picchioni D, Coddington N, Fukunaga M et al (2013) Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A 110(25):10300–10305 PubMed PMID: 23733938. Pubmed Central PMCID: 3690889

    Google Scholar 

  36. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682 PubMed PMID: 11209064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Datta S, Siwek DF, Patterson EH, Cipolloni PB (1998) Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Synapse 30(4):409–423 PubMed PMID: 9826233

    Article  CAS  PubMed  Google Scholar 

  38. Jouvet M (1967) Neurophysiology of the states of sleep. Physiol Rev 47(2):117–177 PubMed PMID: 5342870

    CAS  PubMed  Google Scholar 

  39. Mikiten T, Niebyl P, Hendley C (1961) EEG desynchronization during behavioural sleep associated with spike discharges from the thalamus of the cat. Fed Proc 20:327

    Google Scholar 

  40. Mouret J, Jeannerod M, Jouvet M (1963) Electrical activity of the visual system during the paradoxical phase of sleep in the cat. J Physiol (Paris) 55:305–306 PubMed PMID: 13936360

    Google Scholar 

  41. Hobson JA (1964) The phasic electrical activity of the cortex and thalamus during desynchronized sleep in cats. C R Seances Soc Biol Fil1 58:2131–2135 PubMed PMID: 14282131. L’activit’e ‘electrique phasique du cortex et du thalamus au cours du sommeil d’esynchronis’e chez le chat

    Google Scholar 

  42. Salzarulo P, Lairy GC, Bancaud J, Munari C, Barros0Ferreira MD (1975) Direct depth recording of the striate cortex during REM sleep in man: are there PGO potentials? Electroencephalogr Clin Neurophysiol 38(2):199–202 PubMed PMID: 45953

    Google Scholar 

  43. McCarley RW, Winkelman JW, Duffy FH (1983) Human cerebral potentials associated with REM sleep rapid eye movements: links to PGO waves and waking potentials. Brain Res 274(2):359–364 PubMed PMID: 6626965

    Article  CAS  PubMed  Google Scholar 

  44. Ioannides AA, Corsi-Cabrera M, Fenwick PB, del Rio Portilla Y, Laskaris NA, Khurshudyan A et al (2004) MEG tomography of human cortex and brainstem activity in waking and REM sleep saccades. Cereb Cortex 14(1):56–72 PubMed PMID: 14654457

    Article  PubMed  Google Scholar 

  45. Inoue S, Saha U, Musha T (1999) Spatio-temporal distribution of neuronal activities and REM sleep. In: Mallick B, Inoue S (eds) Rapid eye movement sleep. Narosa Publishing House, New Dehli, pp 214–230

    Google Scholar 

  46. Peigneux P, Laureys S, Fuchs S, Delbeuck X, Degueldre C, Aerts J et al (2001) Generation of rapid eye movements during paradoxical sleep in humans. Neuroimage 14(3):701–708

    Article  CAS  PubMed  Google Scholar 

  47. Miyauchi S, Misaki M, Kan S, Fukunaga T, Koike T (2009) Human brain activity time-locked to rapid eye movements during REM sleep. Exp Brain Res 192(4):657–667 PubMed PMID: 18830586. Epub 2008/10/03. eng

    Google Scholar 

  48. Wehrle R, Czisch M, Kaufmann C, Wetter TC, Holsboer F, Auer DP et al (2005) Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study. Neuroreport 16(8):853–857 PubMed PMID: 15891584

    Article  PubMed  Google Scholar 

  49. Dang-Vu TT, Schabus M, Cologan V, Maquet P (2009) Sleep: implications for theories of dreaming and consciousness. In: Banks WP (ed) Encyclopedia of consciousness, vol 2. Elsevier, Oxford, p 357–373

    Google Scholar 

  50. Schwartz S, Maquet P (2002) Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn Sci. 6(1):23–30 PubMed PMID: 11849612

    Article  PubMed  Google Scholar 

  51. Dresler M, Wehrle R, Spoormaker VI, Koch SP, Holsboer F, Steiger A et al (2012) Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study. Sleep 35(7):1017–1020 PubMed PMID: 22754049. Pubmed Central PMCID: 3369221

    Google Scholar 

  52. Dresler M, Koch SP, Wehrle R, Spoormaker VI, Holsboer F, Steiger A et al (2011) Dreamed movement elicits activation in the sensorimotor cortex. Curr Biol 21(21):1833–1837 PubMed PMID: 22036177

    Article  CAS  PubMed  Google Scholar 

  53. Perrin F, Garcia-Larrea L, Mauguiere F, Bastuji H (1999) A differential brain response to the subject’s own name persists during sleep. Clin Neurophysiol 110(12):2153–2164 PubMed PMID: 10616121

    Article  CAS  PubMed  Google Scholar 

  54. Bonnet M (1982) Performance during sleep. In: Webb WB (ed) Biological rhythms, sleep and performance. Wiley, Chichester, pp 205–237

    Google Scholar 

  55. Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD (2000) Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron 28(3):991–999 PubMed PMID: 11163282

    Article  CAS  PubMed  Google Scholar 

  56. Czisch M, Wehrle R, Stiegler A, Peters H, Andrade K, Holsboer F et al (2009) Acoustic oddball during NREM sleep: a combined EEG/fMRI study. PLoS ONE 4(8):e6749 PubMed PMID: 19707599. Pubmed Central PMCID: 2727699. Epub 2009/08/27. eng

    Google Scholar 

  57. Czisch M, Wetter TC, Kaufmann C, Pollmacher T, Holsboer F, Auer DP (2002) Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. Neuroimage 16(1):251–258 PubMed PMID: 11969332

    Article  PubMed  Google Scholar 

  58. Born AP, Law I, Lund TE, Rostrup E, Hanson LG, Wildschiodtz G et al (2002) Cortical deactivation induced by visual stimulation in human slow-wave sleep. NeuroImage 17(3):1325–1335 PubMed PMID: 12414272

    Article  PubMed  Google Scholar 

  59. Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmacher T et al (2004) Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci 20(2):566–574 PubMed PMID: 15233766

    Article  PubMed  Google Scholar 

  60. Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Auer DP, Pollmacher T et al (2007) Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci 25(3):863–871 PubMed PMID: 17328781. eng

    Google Scholar 

  61. Dang-Vu TT, Bonjean M, Schabus M, Boly M, Darsaud A, Desseilles M et al (2011) Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A 108(37):15438–15443 PubMed PMID: 21896732. Epub 2011/09/08. eng

    Google Scholar 

  62. Dang-Vu TT, McKinney SM, Buxton OM, Solet JM, Ellenbogen JM (2010) Spontaneous brain rhythms predict sleep stability in the face of noise. Curr Biol 20(15):R626–R627 PubMed PMID: 20692606. Epub 2010/08/10. eng

    Google Scholar 

  63. Andrade KC, Spoormaker VI, Dresler M, Wehrle R, Holsboer F, Samann PG et al (2011) Sleep spindles and hippocampal functional connectivity in human NREM sleep. J Neurosci 31(28):10331–10339 PubMed PMID: 21753010. Epub 2011/07/15. eng

    Google Scholar 

  64. Schabus M, Dang-Vu TT, Heib DP, Boly M, Desseilles M, Vandewalle G et al (2012) The Fate of Incoming Stimuli during NREM Sleep is determined by spindles and the phase of the slow oscillation. Front Neurol 3:40 PubMed PMID: 22493589. Pubmed Central PMCID: 3319907. Epub 2012/04/12. eng

    Google Scholar 

  65. Maquet P, Smith C, Stickgold R (2003) Sleep and brain plasticity. Oxford University Press, Oxford

    Book  Google Scholar 

  66. Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C et al (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3(8):831–836 PubMed PMID: 10903578

    Article  CAS  PubMed  Google Scholar 

  67. Peigneux P, Laureys S, Fuchs S, Destrebecqz A, Collette F, Delbeuck X et al (2003) Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage 20(1):125–134 PubMed PMID: 14527575

    Article  PubMed  Google Scholar 

  68. Laureys S, Peigneux P, Phillips C, Fuchs S, Degueldre C, Aerts J et al (2001) Experience-dependent changes in cerebral functional connectivity during human rapid eye movement sleep. Neuroscience 105(3):521–525

    Google Scholar 

  69. Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J et al (2004) Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44(3):535–545 PubMed PMID: 15504332

    Article  CAS  PubMed  Google Scholar 

  70. Plihal W, Born J (1999) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36(5):571–582 PubMed PMID: 10442025

    Article  CAS  PubMed  Google Scholar 

  71. Smith C (1995) Sleep states and memory processes. Behav Brain Res 69(1–2):137–145 PubMed PMID: 7546305

    Google Scholar 

  72. Maquet P, Schwartz S, Passingham R, Frith C (2003) Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J Neurosci 23(4):1432–1440 PubMed PMID: 12598632

    CAS  PubMed  Google Scholar 

  73. Krauzlis RJ, Stone LS (1999) Tracking with the mind’s eye. Trends Neurosci 22(12):544–550 PubMed PMID: 10542434

    Article  CAS  PubMed  Google Scholar 

  74. Orban P, Rauchs G, Balteau E, Degueldre C, Luxen A, Maquet P et al (2006) Sleep after spatial learning promotes covert reorganization of brain activity. Proc Natl Acad Sci U S A 103(18):7124–7129 PubMed PMID: 16636288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M et al (2007) Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A 104(47):18778–10783 PubMed PMID: 18000060. Pubmed Central PMCID: 2141853. Epub 2007/11/15. eng

    Google Scholar 

  76. Sterpenich V, Albouy G, Boly M, Vandewalle G, Darsaud A, Balteau E et al (2007) Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLoS Biol 5(11):e282 PubMed PMID: 17958471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Takashima A, Nieuwenhuis ILC, Jensen O, Talamini LM, Rijpkema M, Fernandez G (2009) Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci 29(32):10087–10093 PubMed PMID: 1155

    Google Scholar 

  78. Rasch B, Buchel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315(5817):1426–1429 PubMed PMID: 17347444

    Article  CAS  PubMed  Google Scholar 

  79. van Dongen EV, Takashima A, Barth M, Zapp J, Schad LR, Paller KA et al (2012) Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Natl Acad Sci U S A 109(26):10575–10580 PubMed PMID: 22691500. Pubmed Central PMCID: 3387124

    Google Scholar 

  80. Gais S, Molle M, Helms K, Born J (2002) Learning-dependent increases in sleep spindle density. J Neurosci 22(15):6830–6834 PubMed PMID: 12151563

    CAS  PubMed  Google Scholar 

  81. Smith C, MacNeill C (1994) Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. J Sleep Res 3(4):206–213 PubMed PMID: 10607127

    Article  CAS  PubMed  Google Scholar 

  82. Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R (2002) Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35(1):205–211 PubMed PMID: 12123620

    Article  CAS  PubMed  Google Scholar 

  83. Schabus M, Gruber G, Parapatics S, Sauter C, Klosch G, Anderer P et al (2004) Sleep spindles and their significance for declarative memory consolidation. Sleep 27(8):1479–1485 PubMed PMID: 15683137

    Article  PubMed  Google Scholar 

  84. Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430(6995):78–81 PubMed PMID: 15184907

    Article  CAS  PubMed  Google Scholar 

  85. Smith CT, Nixon MR, Nader RS (2004) Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learn Mem 11(6):714–719 PubMed PMID: 15576889

    Google Scholar 

  86. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613 PubMed PMID: 17086200

    Google Scholar 

  87. Bergmann TO, Molle M, Diedrichs J, Born J, Siebner HR (2011) Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. NeuroImage 59(3):2733–2742 PubMed PMID: 22037418. Epub 2011/11/01. eng

    Google Scholar 

  88. Horne JA, Reyner LA (1995) Sleep related vehicle accidents. BMJ 310(6979):565–567 PubMed PMID: 7888930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Hazlett E, Sicotte N et al (1991) The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Sleep 14(2):155–162 PubMed PMID: 1866529

    CAS  PubMed  Google Scholar 

  90. Thomas ML, SIng HC, Belenky G, Holcomb HH, Mayberg HS, Dannals RF et al (2003) Neural basis of alertness and cognitive performance impairments during sleepiness. II. Effects of 48 and 72 hours of sleep deprivation on waking human regional brain activity. Thalamus Relat Syst 2:199–229

    Google Scholar 

  91. Horne JA (1993) Human sleep, sleep loss and behaviour. Implications for the prefrontal cortex and psychiatric disorder. Br J Psychiatry 162:413–419 PubMed PMID: 8453439

    Article  CAS  PubMed  Google Scholar 

  92. Mu Q, Nahas Z, Johnson KA, Yamanaka K, Mishory A, Koola J et al (2005) Decreased cortical response to verbal working memory following sleep deprivation. Sleep 28(1):55–67 PubMed PMID: 15700721

    Article  PubMed  Google Scholar 

  93. Drummond SP, Brown GG, Gillin JC, Stricker JL, Wong EC, Buxton RB (2000) Altered brain response to verbal learning following sleep deprivation. Nature 403(6770):655–657 PubMed PMID: 10688201

    Article  CAS  PubMed  Google Scholar 

  94. Chee MW, Choo WC (2004) Functional imaging of working memory after 24 hr of total sleep deprivation. J Neurosci 24(19):4560–4567 PubMed PMID: 15140927

    Article  CAS  PubMed  Google Scholar 

  95. Choo WC, Lee WW, Venkatraman V, Sheu FS, Chee MW (2005) Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage 25(2):579–587 PubMed PMID: 15784437. Epub 2005/03/24. eng

    Google Scholar 

  96. Drummond SP, Brown GG, Salamat JS, Gillin JC (2004) Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep 27(3):445–451 PubMed PMID: 15164897

    PubMed  Google Scholar 

  97. Tomasi D, Wang RL, Telang F, Boronikolas V, Jayne MC, Wang GJ et al (2009) Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex 19(1):233–240 PubMed PMID: 18483003. Pubmed Central PMCID: 2638746

    Google Scholar 

  98. Muto V, Shaffii-le Bourdiec A, Matarazzo L, Foret A, Mascetti L, Jaspar M et al (2012) Influence of acute sleep loss on the neural correlates of alerting, orientating and executive attention components. J Sleep Res 21(6):648–658 PubMed PMID: 22594455

    Article  PubMed  Google Scholar 

  99. Drummond SP, Meloy MJ, Yanagi MA, Orff HJ, Brown GG (2005) Compensatory recruitment after sleep deprivation and the relationship with performance. Psychiatry Res 140(3):211–223 PubMed PMID: 16263248

    Article  PubMed  Google Scholar 

  100. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33(3):279–296 PubMed PMID: 18824195

    Article  PubMed  Google Scholar 

  101. Gujar N, Yoo SS, Hu P, Walker MP (2010) The unrested resting brain: sleep deprivation alters activity within the default-mode network. J Cogn Neurosci 22(8):1637–1648 PubMed PMID: 19702469. Pubmed Central PMCID: 2883887

    Google Scholar 

  102. De Havas JA, Parimal S, Soon CS, Chee MW (2012) Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage 59(2):1745–1751 PubMed PMID: 21872664

    Article  PubMed  Google Scholar 

  103. Samann PG, Tully C, Spoormaker VI, Wetter TC, Holsboer F, Wehrle R et al (2010) Increased sleep pressure reduces resting state functional connectivity. Magma. 23(5–6):375–389 PubMed PMID: 20473549

    Article  PubMed  Google Scholar 

  104. Venkatraman V, Chuah YM, Huettel SA, Chee MW (2007) Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep 30(5):603–609 PubMed PMID: 17552375

    Article  PubMed  Google Scholar 

  105. Venkatraman V, Huettel SA, Chuah LY, Payne JW, Chee MW (2011) Sleep deprivation biases the neural mechanisms underlying economic preferences. J Neurosci 31(10):3712–3718 PubMed PMID: 21389226

    Article  CAS  PubMed  Google Scholar 

  106. Rosales-Lagarde A, Armony JL, Del Rio-Portilla Y, Trejo-Martinez D, Conde R, Corsi-Cabrera M (2012) Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study. Front Behav Neurosci 6:25 PubMed PMID: 22719723. Epub 2012/06/22. eng

    Google Scholar 

  107. Killgore WD, McBride SA (2006) Odor identification accuracy declines following 24 h of sleep deprivation. J Sleep Res 15(2):111–116 PubMed PMID: 16704564

    Article  PubMed  Google Scholar 

  108. Benedict C, Brooks SJ, O’Daly OG, Almen MS, Morell A, Aberg K et al (2012) Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: an fMRI study. J Clin Endocrinol Metab 97(3):E443–E447 PubMed PMID: 22259064

    Article  CAS  PubMed  Google Scholar 

  109. Eisensehr I, Linke R, Noachtar S, Schwarz J, Gildehaus FJ, Tatsch K (2000) Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Comparison with Parkinson’s disease and controls. Brain J Neurol 123(Pt 6):1155–1160 PubMed PMID: 10825354

    Article  Google Scholar 

  110. Happe S, Tings T, Koch W, Welsch J, Helmschmied K, Baier PC et al (2007) Growth hormone response in low-dose apomorphine test correlates with nigrostriatal dopamine transporter binding in patients with Parkinson’s disease. J Neural Transm 114(5):589–594 PubMed PMID: 17187291

    Article  CAS  PubMed  Google Scholar 

  111. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Wong C et al (2008) Sleep deprivation decreases binding of [11C]raclopride to dopamine D2/D3 receptors in the human brain. J Neurosci 28(34):8454–8461 PubMed PMID: 18716203. Pubmed Central PMCID: 2710773

    Google Scholar 

  112. Volkow ND, Tomasi D, Wang GJ, Telang F, Fowler JS, Wang RL et al (2009) Hyperstimulation of striatal D2 receptors with sleep deprivation: Implications for cognitive impairment. Neuroimage 45(4):1232–1240 PubMed PMID: 19349237. Pubmed Central PMCID: 2714585

    Google Scholar 

  113. Volkow ND, Tomasi D, Wang GJ, Telang F, Fowler JS, Logan J et al (2012) Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. J Neurosci 32(19):6711–6717 PubMed PMID: 22573693. Pubmed Central PMCID: 3433285

    Google Scholar 

  114. Martins RC, Andersen ML, Garbuio SA, Bittencourt LR, Guindalini C, Shih MC et al (2010) Dopamine transporter regulation during four nights of REM sleep deprivation followed by recovery--an in vivo molecular imaging study in humans. Sleep 33(2):243–251 PubMed PMID: 20175408. Pubmed Central PMCID: 2817911

    Google Scholar 

  115. Mu Q, Mishory A, Johnson KA, Nahas Z, Kozel FA, Yamanaka K et al (2005) Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep 28(4):433–446 PubMed PMID: 16171288

    Article  PubMed  Google Scholar 

  116. Caldwell JA, Mu Q, Smith JK, Mishory A, Caldwell JL, Peters G et al (2005) Are individual differences in fatigue vulnerability related to baseline differences in cortical activation? Behav Neurosci 119(3):694–707 PubMed PMID: 15998190

    Article  PubMed  Google Scholar 

  117. Chee MW, Chuah LY, Venkatraman V, Chan WY, Philip P, Dinges DF (2006) Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: Correlations of fronto-parietal activation with performance. Neuroimage 31(1):419–428 PubMed PMID: 16427321. Epub 2006/01/24. eng

    Google Scholar 

  118. Chuah YM, Venkatraman V, Dinges DF, Chee MW (2006) The neural basis of interindividual variability in inhibitory efficiency after sleep deprivation. J Neurosci 26(27):7156–7162 PubMed PMID: 16822972

    Article  CAS  PubMed  Google Scholar 

  119. Rocklage M, Williams V, Pacheco J, Schnyer DM. White matter differences predict cognitive vulnerability to sleep deprivation. Sleep 32(8):1100–1103 PubMed PMID: 19725262. Pubmed Central PMCID: 2717201. Epub 2009/09/04. eng

    Google Scholar 

  120. Ziegler DA, Piguet O, Salat DH, Prince K, Connally E, Corkin S (2010) Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiol Aging 31(11):1912–1926 PubMed PMID: 19091444. Pubmed Central PMCID: 2996721

    Google Scholar 

  121. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WE Jr (1992) Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 149(4):538–543 PubMed PMID: 1554042

    Article  CAS  PubMed  Google Scholar 

  122. Wu JC, Gillin JC, Buchsbaum MS, Schachat C, Darnall LA, Keator DB et al (2008) Sleep deprivation PET correlations of Hamilton symptom improvement ratings with changes in relative glucose metabolism in patients with depression. J Affect Disord 107(1–3):181–186 PubMed PMID: 18031825

    Article  CAS  PubMed  Google Scholar 

  123. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M et al (1999) Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry 156(8):1149–1158 PubMed PMID: 10450253

    CAS  PubMed  Google Scholar 

  124. Ebert D, Feistel H, Barocka A (1991) Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99 m-HMPAO SPECT. Psychiatry Res 40(4):247–251 PubMed PMID: 1811242

    Article  CAS  PubMed  Google Scholar 

  125. Ebert D, Feistel H, Barocka A, Kaschka W (1994) Increased limbic blood flow and total sleep deprivation in major depression with melancholia. Psychiatry Res 55(2):101–109 PubMed PMID: 10711798

    Article  CAS  PubMed  Google Scholar 

  126. Clark CP, Frank LR, Brown GG (2001) Sleep deprivation, EEG, and functional MRI in depression: preliminary results. Neuropsychopharmacology 25(5 Suppl):S79–S84 PubMed PMID: 11682279

    Article  CAS  PubMed  Google Scholar 

  127. Smith GS, Reynolds CF 3rd, Pollock B, Derbyshire S, Nofzinger E, Dew MA et al (1999) Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression. Am J Psychiatry 156(5):683–689 PubMed PMID: 10327899

    CAS  PubMed  Google Scholar 

  128. Smith GS, Reynolds CF, 3rd, Houck PR, Dew MA, Ginsberg J, Ma Y et al (2009) Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression: a randomized, placebo-controlled study. Psychiatry Res 171(1):1–9 PubMed PMID: 19087899. Pubmed Central PMCID: 2878400

    Google Scholar 

  129. Benedetti F, Calabrese G, Bernasconi A, Cadioli M, Colombo C, Dallaspezia S et al (2009) Spectroscopic correlates of antidepressant response to sleep deprivation and light therapy: a 3.0 Tesla study of bipolar depression. Psychiatry Res 173(3):238–242 PubMed PMID: 19682864

    Article  CAS  PubMed  Google Scholar 

  130. Hefti K, Holst SC, Sovago J, Bachmann V, Buck A, Ametamey SM et al (2013) Increased metabotropic glutamate receptor subtype 5 availability in human brain after one night without sleep. Biol Psychiatry 73(2):161–168 PubMed PMID: 22959709

    Article  CAS  PubMed  Google Scholar 

  131. Elmenhorst D, Kroll T, Matusch A, Bauer A (2012) Sleep deprivation increases cerebral serotonin 2A receptor binding in humans. Sleep 35(12):1615–23 PubMed PMID: 23204604. Pubmed Central PMCID: 3490354

    Google Scholar 

  132. Ebert D, Feistel H, Kaschka W, Barocka A, Pirner A (1994) Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation—preliminary results. Biol Psychiatry 35(11):880–885 PubMed PMID: 8054411

    Article  CAS  PubMed  Google Scholar 

  133. Gujar N, Yoo SS, Hu P, Walker MP (2011) Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. J Neurosci 31(12):4466–4474 PubMed PMID: 21430147. Pubmed Central PMCID: 3086142

    Google Scholar 

  134. Dorsey CM, Lukas SE, Moore CM, Tartarini WL, Parow AM, Villafuerte RA et al (2003) Phosphorous31 magnetic resonance spectroscopy after total sleep deprivation in healthy adult men. Sleep 26(5):573–577 PubMed PMID: 12938810

    Article  PubMed  Google Scholar 

  135. Murashita J, Yamada N, Kato T, Tazaki M, Kato N (1999) Effects of sleep deprivation: the phosphorus metabolism in the human brain measured by 31P-magnetic resonance spectroscopy. Psychiatry Clin Neurosci 53(2):199–201 PubMed PMID: 10459688

    Article  CAS  PubMed  Google Scholar 

  136. Bernier D, Bartha R, Devarajan S, Macmaster FP, Schmidt MH, Rusak B (2009) Effects of overnight sleep restriction on brain chemistry and mood in women with unipolar depression and healthy controls. J Psychiatry Neurosci JPN 34(5):352–360 PubMed PMID: 19721845. Pubmed Central PMCID: 2732741

    Google Scholar 

  137. Luber B, Stanford AD, Bulow P, Nguyen T, Rakitin BC, Habeck C et al (2008) Remediation of sleep-deprivation-induced working memory impairment with fMRI-guided transcranial magnetic stimulation. Cereb Cortex 18(9):2077–2085 PubMed PMID: 18203694. Pubmed Central PMCID: 2981026. Epub 2008/01/22. eng

    Google Scholar 

  138. Luber B, Steffener J, Tucker A, Habeck C, Peterchev AV, Deng ZD et al (2013) Extended remediation of sleep deprived-induced working memory deficits using fMRI-guided transcranial magnetic stimulation. Sleep 36(6):857–871 PubMed PMID: 23729929. Pubmed Central PMCID: 3649828

    Google Scholar 

  139. AASM (2001) International classification of sleep disorders. Diagnostic and coding manual. American Academy of Sleep Medicine, Chicago, Illinois

    Google Scholar 

  140. Bonnet MH, Arand DL (1995) 24-Hour metabolic rate in insomniacs and matched normal sleepers. Sleep 18(7):581–588 PubMed PMID: 8552929

    Article  CAS  PubMed  Google Scholar 

  141. Bonnet MH, Arand DL (1997) Hyperarousal and insomnia. Sleep Med Rev 1(2):97–108 PubMed PMID: 15310517

    Article  CAS  PubMed  Google Scholar 

  142. Stepanski E, Zorick F, Roehrs T, Young D, Roth T (1988) Daytime alertness in patients with chronic insomnia compared with asymptomatic control subjects. Sleep 11(1):54–60 PubMed PMID: 3363270

    Article  CAS  PubMed  Google Scholar 

  143. Perlis ML, Smith MT, Andrews PJ, Orff H, Giles DE (2001) Beta/Gamma EEG activity in patients with primary and secondary insomnia and good sleeper controls. Sleep 24(1):110–117 PubMed PMID: 11204046. Epub 2001/02/24. eng

    Google Scholar 

  144. Smith MT, Perlis ML, Chengazi VU, Pennington J, Soeffing J, Ryan JM et al (2002) Neuroimaging of NREM sleep in primary insomnia: a Tc-99-HMPAO single photon emission computed tomography study. Sleep 25(3):325–335 PubMed PMID: 12003163

    PubMed  Google Scholar 

  145. Smith MT, Perlis ML, Chengazi VU, Soeffing J, McCann U (2005) NREM sleep cerebral blood flow before and after behavior therapy for chronic primary insomnia: preliminary single photon emission computed tomography (SPECT) data. Sleep Med 6(1):93–94 PubMed PMID: 15680307

    Article  PubMed  Google Scholar 

  146. Nofzinger EA, Buysse DJ, Germain A, Price JC, Miewald JM, Kupfer DJ (2004) Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry 161(11):2126–2128 PubMed PMID: 15514418

    Article  PubMed  Google Scholar 

  147. Nofzinger EA, Nissen C, Germain A, Moul D, Hall M, Price JC et al (2006) Regional cerebral metabolic correlates of WASO during NREM sleep in insomnia. J Clin Sleep Med 2(3):316–322 PubMed PMID: 17561544. Epub 2007/06/15. eng

    Google Scholar 

  148. Altena E, Van Der Werf YD, Sanz-Arigita EJ, Voorn TA, Rombouts SA, Kuijer JP et al (2008) Prefrontal hypoactivation and recovery in insomnia. Sleep 31(9):1271–1276

    PubMed  PubMed Central  Google Scholar 

  149. Drummond SP, Walker M, Almklov E, Campos M, Anderson DE, Straus LD (2013) Neural correlates of working memory performance in primary insomnia. Sleep 36(9):1307–1316 PubMed PMID: 23997363. Pubmed Central PMCID: 3738039

    Google Scholar 

  150. Baglioni C, Spiegelhalder K, Lombardo C, Riemann D (2010) Sleep and emotions: a focus on insomnia. Sleep Med Rev 14(4):227–238 PubMed PMID: 20137989

    Article  PubMed  Google Scholar 

  151. Huang Z, Liang P, Jia X, Zhan S, Li N, Ding Y et al (2012) Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI. Eur J Radiol 81(6):1288–1295 PubMed PMID: 21458943

    Article  PubMed  Google Scholar 

  152. Riemann D, Voderholzer U, Spiegelhalder K, Hornyak M, Buysse DJ, Nissen C et al (2007) Chronic insomnia and MRI-measured hippocampal volumes: a pilot study. Sleep 30(8):955–958 PubMed PMID: 17702263

    Article  PubMed  PubMed Central  Google Scholar 

  153. Winkelman JW, Benson KL, Buxton OM, Lyoo IK, Yoon S, O’Connor S et al (2010) Lack of hippocampal volume differences in primary insomnia and good sleeper controls: an MRI volumetric study at 3 Tesla. Sleep Med 11(6):576–582 PubMed PMID: 20466585

    Article  PubMed  Google Scholar 

  154. Noh HJ, Joo EY, Kim ST, Yoon SM, Koo DL, Kim D et al (2012) The Relationship between hippocampal volume and cognition in patients with chronic primary insomnia. J Clin Neurol 8(2):130–138 PubMed PMID: 22787497. Pubmed Central PMCID: 3391618. Epub 2012/07/13. eng

    Google Scholar 

  155. Spiegelhalder K, Regen W, Baglioni C, Kloppel S, Abdulkadir A, Hennig J et al (2013) Insomnia does not appear to be associated with substantial structural brain changes. Sleep 36(5):731–737 PubMed PMID: 23633756. Pubmed Central PMCID: 3624828

    Google Scholar 

  156. Altena E, Vrenken H, Van Der Werf YD, van den Heuvel OA, Van Someren EJ (2010) Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biol Psychiatry 67(2):182–185 PubMed PMID: 19782344. Epub 2009/09/29. eng

    Google Scholar 

  157. Winkelman JW, Plante DT, Schoerning L, Benson K, Buxton OM, O’Connor SP et al (2013) Increased rostral anterior cingulate cortex volume in chronic primary insomnia. Sleep 36(7):991–998 PubMed PMID: 23814335. Pubmed Central PMCID: 3669070

    Google Scholar 

  158. Plante DT, Jensen JE, Schoerning L, Winkelman JW (2012) Reduced gamma-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder? Neuropsychopharmacology 37(6):1548–1557 PubMed PMID: 22318195. Pubmed Central PMCID: 3327859

    Google Scholar 

  159. Joo EY, Noh HJ, Kim JS, Koo DL, Kim D, Hwang KJ et al (2013) Brain gray matter deficits in patients with chronic primary insomnia. Sleep 36(7):999–1007 PubMed PMID: 23814336. Pubmed Central PMCID: 3669067

    Google Scholar 

  160. Winkelman JW, Buxton OM, Jensen JE, Benson KL, O’Connor SP, Wang W et al (2008) Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep 31(11):1499–1506 PubMed PMID: 19014069. Pubmed Central PMCID: 2579978

    Google Scholar 

  161. Morgan PT, Pace-Schott EF, Mason GF, Forselius E, Fasula M, Valentine GW et al (2012) Cortical GABA levels in primary insomnia. Sleep 35(6):807–814 PubMed PMID: 22654200. Pubmed Central PMCID: 3353043

    Google Scholar 

  162. Harper DG, Plante DT, Jensen JE, Ravichandran C, Buxton OM, Benson KL et al (2013) Energetic and cell membrane metabolic products in patients with primary insomnia: a 31-phosphorus magnetic resonance spectroscopy study at 4 tesla. Sleep 36(4):493–500 PubMed PMID: 23564996. Pubmed Central PMCID: 3612248

    Google Scholar 

  163. Baumann CR, Khatami R, Werth E, Bassetti CL. Hypocretin (orexin) deficiency predicts severe objective excessive daytime sleepiness in narcolepsy with cataplexy. J Neurol Neurosurg Psychiatry 77(3):402–404 PubMed PMID: 16484654. Pubmed Central PMCID: 2077721. Epub 2006/02/18. eng

    Google Scholar 

  164. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(5):1 page following 696 PubMed PMID: 9527442

    Google Scholar 

  165. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997 PubMed PMID: 10973318

    Article  CAS  PubMed  Google Scholar 

  166. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474 PubMed PMID: 11055430

    Article  CAS  PubMed  Google Scholar 

  167. Plazzi G, Montagna P, Provini F, Bizzi A, Cohen M, Lugaresi E (1996) Pontine lesions in idiopathic narcolepsy. Neurology 46(5):1250–1254 PubMed PMID: 8628461

    Article  CAS  PubMed  Google Scholar 

  168. Bassetti C, Aldrich MS, Quint DJ (1997) MRI findings in narcolepsy. Sleep 20(8):630–631 PubMed PMID: 9351130

    Article  CAS  PubMed  Google Scholar 

  169. Frey JL, Heiserman JE (1997) Absence of pontine lesions in narcolepsy. Neurology 48(4):1097–1099 PubMed PMID: 9109908

    Article  CAS  PubMed  Google Scholar 

  170. Overeem S, Steens SC, Good CD, Ferrari MD, Mignot E, Frackowiak RS et al (2003) Voxel-based morphometry in hypocretin-deficient narcolepsy. Sleep 26(1):44–46 PubMed PMID: 12627731

    PubMed  Google Scholar 

  171. Joo EY, Tae WS, Kim ST, Hong SB (2009) Gray matter concentration abnormality in brains of narcolepsy patients. Korean J Radiol 10(6):552–558 PubMed PMID: 19885310. Pubmed Central PMCID: 2770823. Epub 2009/11/04. eng

    Google Scholar 

  172. Kim SJ, Lyoo IK, Lee YS, Lee JY, Yoon SJ, Kim JE et al (2009) Gray matter deficits in young adults with narcolepsy. Acta Neurol Scand 119(1):61–67 PubMed PMID: 18624787. Epub 2008/07/16. eng

    Google Scholar 

  173. Scherfler C, Frauscher B, Schocke M, Nocker M, Gschliesser V, Ehrmann L et al (2012) White and gray matter abnormalities in narcolepsy with cataplexy. Sleep 35(3):345–351 PubMed PMID: 22379240. Epub 2012/03/02. eng

    Google Scholar 

  174. Brenneis C, Brandauer E, Frauscher B, Schocke M, Trieb T, Poewe W et al (2005) Voxel-based morphometry in narcolepsy. Sleep Med 6:531 PubMed PMID: 15994127

    Google Scholar 

  175. Kaufmann C, Schuld A, Pollmacher T, Auer DP (2002) Reduced cortical gray matter in narcolepsy: preliminary findings with voxel-based morphometry. Neurology 58(12):1852–1855 PubMed PMID: 12084891

    Article  PubMed  Google Scholar 

  176. Draganski B, Geisler P, Hajak G, Schuierer G, Bogdahn U, Winkler J et al (2002) Hypothalamic gray matter changes in narcoleptic patients. Nat Med 8(11):1186–1188 PubMed PMID: 12411926

    Article  CAS  PubMed  Google Scholar 

  177. Buskova J, Vaneckova M, Sonka K, Seidl Z, Nevsimalova S (2006) Reduced hypothalamic gray matter in narcolepsy with cataplexy. Neuro Endocrinol Lett 27(6):769–772 PubMed PMID: 17187022. eng

    Google Scholar 

  178. Joo EY, Kim SH, Kim ST, Hong SB (2012) Hippocampal volume and memory in narcoleptics with cataplexy. Sleep Med 13(4):396–401 PubMed PMID: 22361297. Epub 2012/03/01. eng

    Google Scholar 

  179. Brabec J, Rulseh A, Horinek D, Pala A, Guerreiro H, Buskova J et al (2011) Volume of the amygdala is reduced in patients with narcolepsy—a structural MRI study. Neuro Endocrinol Lett 32(5):652–656 PubMed PMID: 22167152. Epub 2011/12/15. eng

    Google Scholar 

  180. Joo EY, Jeon S, Lee M, Kim ST, Yoon U, Koo DL et al (2011) Analysis of cortical thickness in narcolepsy patients with cataplexy. Sleep 34(10):1357–1364 PubMed PMID: 21966067. Pubmed Central PMCID: 3174837. Epub 2011/10/04. eng

    Google Scholar 

  181. Schaer M, Poryazova R, Schwartz S, Bassetti CL, Baumann CR (2012) Cortical morphometry in narcolepsy with cataplexy. J Sleep Res 21(5):487–494 PubMed PMID: 22309460. Epub 2012/02/09. eng

    Google Scholar 

  182. Menzler K, Belke M, Unger MM, Ohletz T, Keil B, Heverhagen JT et al (2012) DTI reveals hypothalamic and brainstem white matter lesions in patients with idiopathic narcolepsy. Sleep Med 13(6):736–742 PubMed PMID: 22541810. Epub 2012/05/01. eng

    Google Scholar 

  183. Lodi R, Tonon C, Vignatelli L, Iotti S, Montagna P, Barbiroli B et al (2004) In vivo evidence of neuronal loss in the hypothalamus of narcoleptic patients. Neurology 63(8):1513–1515 PubMed PMID: 15505179

    Article  CAS  PubMed  Google Scholar 

  184. Ellis CM, Simmons A, Lemmens G, Williams SC, Parkes JD (1998) Proton spectroscopy in the narcoleptic syndrome. Is there evidence of a brainstem lesion? Neurology 50(2 Suppl 1):S23–S26 PubMed PMID: 9484419. eng

    Google Scholar 

  185. Meyer JS, Sakai F, Karacan I, Derman S, Yamamoto M (1980) Sleep apnea, narcolepsy, and dreaming: regional cerebral hemodynamics. Ann Neurol 7(5):479–485 PubMed PMID: 7396426. eng

    Google Scholar 

  186. Meyer JS, Ishikawa Y, Hata T, Karacan I (1987) Cerebral blood flow in normal and abnormal sleep and dreaming. Brain Cogn 6(3):266–294 PubMed PMID: 3606861

    Article  CAS  PubMed  Google Scholar 

  187. Asenbaum S, Zeithofer J, Saletu B, Frey R, Brucke T, Podreka I et al (1995) Technetium-99 m-HMPAO SPECT imaging of cerebral blood flow during REM sleep in narcoleptics. J Nucl Med 36(7):1150–1155 PubMed PMID: 7790937. eng

    Google Scholar 

  188. Joo EY, Tae WS, Kim JH, Kim BT, Hong SB (2004) Glucose hypometabolism of hypothalamus and thalamus in narcolepsy. Ann Neurol. 56(3):437–440 PubMed PMID: 15349874

    Article  CAS  PubMed  Google Scholar 

  189. Dauvilliers Y, Comte F, Bayard S, Carlander B, Zanca M, Touchon J (2010) A brain PET study in patients with narcolepsy-cataplexy. J Neurol Neurosurg Psychiatry 81(3):344–348 PubMed PMID: 19850578. Epub 2009/10/24. eng

    Google Scholar 

  190. Yeon Joo E, Hong SB, Tae WS, Kim JH, Han SJ, Cho YW et al (2005) Cerebral perfusion abnormality in narcolepsy with cataplexy. Neuroimage 28(2):410–416 PubMed PMID: 16098766

    Google Scholar 

  191. Hong SB, Tae WS, Joo EY (2006) Cerebral perfusion changes during cataplexy in narcolepsy patients. Neurology 66(11):1747–1749 PubMed PMID: 16769955

    Article  PubMed  Google Scholar 

  192. Chabas D, Habert MO, Maksud P, Tourbah A, Minz M, Willer JC et al (2007) Functional imaging of cataplexy during status cataplecticus. Sleep 30(2):153–156 PubMed PMID: 17326540. eng

    Google Scholar 

  193. Schwartz S, Ponz A, Poryazova R, Werth E, Boesiger P, Khatami R et al (2008) Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain J Neurol 131(Pt 2):514–522

    Article  Google Scholar 

  194. Reiss AL, Hoeft F, Tenforde AS, Chen W, Mobbs D, Mignot EJ (2008) Anomalous hypothalamic responses to humor in cataplexy. PLoS ONE 3(5):e2225 PubMed PMID: 18493621. eng

    Google Scholar 

  195. Ponz A, Khatami R, Poryazova R, Werth E, Boesiger P, Schwartz S et al (2010) Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann Neurol 67(3):394–398 PubMed PMID: 20373351. Epub 2010/04/08. eng

    Google Scholar 

  196. Ponz A, Khatami R, Poryazova R, Werth E, Boesiger P, Bassetti CL et al (2010) Abnormal activity in reward brain circuits in human narcolepsy with cataplexy. Ann Neuroll 67(2):190–200 PubMed PMID: 20225193. Epub 2010/03/13. eng

    Google Scholar 

  197. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189(4196):55–58 PubMed PMID: 1094539

    Article  CAS  PubMed  Google Scholar 

  198. Sudo Y, Suhara T, Honda Y, Nakajima T, Okubo Y, Suzuki K et al (1998) Muscarinic cholinergic receptors in human narcolepsy: a PET study. Neurology 51(5):1297–1302 PubMed PMID: 9818849

    Article  CAS  PubMed  Google Scholar 

  199. Aldrich MS, Hollingsworth Z, Penney JB (1992) Dopamine-receptor autoradiography of human narcoleptic brain. Neurology 42(2):410–415 PubMed PMID: 1736175

    Article  CAS  PubMed  Google Scholar 

  200. Kish SJ, Mamelak M, Slimovitch C, Dixon LM, Lewis A, Shannak K et al (1992) Brain neurotransmitter changes in human narcolepsy. Neurology 42(1):229–234 PubMed PMID: 1370862

    Article  CAS  PubMed  Google Scholar 

  201. Eisensehr I, Linke R, Tatsch K, von Lindeiner H, Kharraz B, Gildehaus FJ et al (2003) Alteration of the striatal dopaminergic system in human narcolepsy. Neurology 60(11):1817–1819 PubMed PMID: 12796537

    Article  CAS  PubMed  Google Scholar 

  202. Rinne JO, Hublin C, Partinen M, Ruottinen H, Ruotsalainen U, Nagren K et al (1995) Positron emission tomography study of human narcolepsy: no increase in striatal dopamine D2 receptors. Neurology 45(9):1735–1738 PubMed PMID: 7675236

    Article  CAS  PubMed  Google Scholar 

  203. Rinne JO, Hublin C, Partinen M, Ruottinen H, Nagren K, Lehikoinen P et al (1996) Striatal dopamine D1 receptors in narcolepsy: a PET study with [11C]NNC 756. J Sleep Res 5(4):262–264 PubMed PMID: 9065878

    Article  CAS  PubMed  Google Scholar 

  204. MacFarlane JG, List SJ, Moldofsky H, Firnau G, Chen JJ, Szechtman H et al (1997) Dopamine D2 receptors quantified in vivo in human narcolepsy. Biol Psychiatry 41(3):305–310 PubMed PMID: 9024953. eng

    Google Scholar 

  205. Hublin C, Launes J, Nikkinen P, Partinen M (1994) Dopamine D2-receptors in human narcolepsy: a SPECT study with 123I-IBZM. Acta Neurol Scand 90(3):186–189 PubMed PMID: 7847059

    Article  CAS  PubMed  Google Scholar 

  206. Staedt J, Stoppe G, Kogler A, Riemann H, Hajak G, Rodenbeck A et al (1996) [123I]IBZM SPET analysis of dopamine D2 receptor occupancy in narcoleptic patients in the course of treatment. Biol Psychiatry 39(2):107–111 PubMed PMID: 8717608

    Article  CAS  PubMed  Google Scholar 

  207. Khan N, Antonini A, Parkes D, Dahlitz MJ, Meier-Ewert K, Weindl A et al (1994) Striatal dopamine D2 receptors in patients with narcolepsy measured with PET and 11C-raclopride. Neurology 44(11):2102–2104 PubMed PMID: 7969966

    Article  CAS  PubMed  Google Scholar 

  208. Howard RJ, Ellis C, Bullmore ET, Brammer M, Mellers JD, Woodruff PW et al (1996) Functional echoplanar brain imaging correlates of amphetamine administration to normal subjects and subjects with the narcoleptic syndrome. Magn Reson Imaging 14(9):1013–1016 PubMed PMID: 9070991

    Article  CAS  PubMed  Google Scholar 

  209. Ellis CM, Monk C, Simmons A, Lemmens G, Williams SC, Brammer M et al (1999) Functional magnetic resonance imaging neuroactivation studies in normal subjects and subjects with the narcoleptic syndrome. Actions of modafinil. J Sleep Res 8(2):85–93 PubMed PMID: 10389090

    Article  CAS  PubMed  Google Scholar 

  210. Thomas RJ, Kwong K (2006) Modafinil activates cortical and subcortical sites in the sleep-deprived state. Sleep 29(11):1471–1481 PubMed PMID: 17162995. eng

    Google Scholar 

  211. Joo EY, Seo DW, Tae WS, Hong SB (2008) Effect of modafinil on cerebral blood flow in narcolepsy patients. Sleep 31(6):868–873 PubMed PMID: 18548832. eng

    Google Scholar 

  212. Kim YK, Yoon IY, Shin YK, Cho SS, Kim SE (2007) Modafinil-induced hippocampal activation in narcolepsy. Neurosci Lett 422(2):91–96 PubMed PMID: 17600622. eng

    Google Scholar 

  213. Nose I, Ookawa T, Tanaka J, Yamamoto T, Uchimura N, Maeda H et al (2002) Decreased blood flow of the left thalamus during somnolent episodes in a case of recurrent hypersomnia. Psychiatry Clin Neurosci 56(3):277–278 PubMed PMID: 12047594

    Article  PubMed  Google Scholar 

  214. Eisensehr I, Noachtar S, von Schlippenbach C, Uttner I, Kleine J, Seelos K et al (2003) Hypersomnia associated with bilateral posterior hypothalamic lesion. A polysomnographic case study. Eur Neurol 49(3):169–172 PubMed PMID: 12646762

    Article  CAS  PubMed  Google Scholar 

  215. Arii J, Kanbayashi T, Tanabe Y, Ono J, Nishino S, Kohno Y (2001) A hypersomnolent girl with decreased CSF hypocretin level after removal of a hypothalamic tumor. Neurology 56(12):1775–1776 PubMed PMID: 11425955

    Article  CAS  PubMed  Google Scholar 

  216. Arnulf I, Rico T, Mignot E (2012) Diagnosis, disease course, and management of patients with Kleine-Levin syndrome. Lancet Neurol 11(10):918–928

    Article  PubMed  Google Scholar 

  217. Huang Y-S, Guilleminault C, Lin K-L, Hwang F-M, Liu F-Y, Kung Y-P (2012) Relationship between Kleine-Levin syndrome and upper respiratory infection in Taiwan. Sleep 35(1):123–129

    Article  PubMed  PubMed Central  Google Scholar 

  218. Huang Y-SSG, Christian; Kao, Pan-Fu F; Liu, Feng-Yuan Y (2005) SPECT findings in the Kleine-Levin syndrome. Sleep 28(8):955–960

    Google Scholar 

  219. Poryazova R, Schnepf B, Boesiger P, Bassetti C (2007) Magnetic resonance spectroscopy in a patient with Kleine-Levin syndrome. J Neurol 254(10):1445–1446

    Article  CAS  PubMed  Google Scholar 

  220. Hong SB, Joo, EY, Tae WS (2006) Episodiv diencephalic hypoperfusion in Kleine-Levin syndrome. Sleep 29:1091–1093

    Google Scholar 

  221. Billings ME, Watson NF, Keogh BP (2011) Dynamic fMRI changes in Kleine-Levin syndrome. Sleep Med. 12(5):532

    Google Scholar 

  222. Lu ML, Liu HC, Chen CH, Sung SM (2000) Kleine-Levin syndrome and psychosis: observation from an unusual case. Neuropsychiatry Neuropsychol Behav Neurol 13(2):140–142 PubMed PMID: 10780633

    CAS  PubMed  Google Scholar 

  223. Landtblom AM, Dige N, Schwerdt K, Safstrom P, Granerus G (2002) A case of Kleine-Levin syndrome examined with SPECT and neuropsychological testing. Acta Neurol Scand 105(4):318–321 PubMed PMID: 11939946

    Article  PubMed  Google Scholar 

  224. Arias M, Crespo Iglesias JM, Perez J, Requena- Caballero I, Sesar-Ignacio A, Peleteiro-Fernandez M (2002) Kleine-Levin syndrome: contribution of brain SPECT in diagnosis. Rev Neurol 35(6):531–533 PubMed PMID: 12389171 (Sindrome de Kleine-Levin: aportacion diagnostica de la SPECT cerebral)

    Google Scholar 

  225. Portilla P, Durand E, Chalvon A, Habert M, Navelet Y, Prigent A et al (2002) SPECT-identified hypoperfusion of the left temporomesial structures in a Kleine-Levin syndrome. Rev Neurol (Paris) 158(5 Pt 1):593–595 PubMed PMID: 12072828 (Hypoperfusion temporomesiale gauche en TEMP dans un syndrome de Kleine-Levin)

    Google Scholar 

  226. Hsieh CF, Lai CL, Lan SH, Liu CK, Hsu CY (2010) Modafinil-associated vivid visual hallucination in a patient with Kleine-Levin syndrome: case report. J Clin Psychopharmacol 30(3):347–350 PubMed PMID: 20473083

    Article  PubMed  Google Scholar 

  227. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165(9):1217–1239 PubMed PMID: 11991871

    Article  PubMed  Google Scholar 

  228. Canessa N, Castronovo V, Cappa SF, Aloia MS, Marelli S, Falini A et al (2011) Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment. Am J Respir Crit Care Med 183(10):1419–1426 PubMed PMID: 21037021. Epub 2010/11/03. eng

    Google Scholar 

  229. Arens R, Marcus CL (2004) Pathophysiology of upper airway obstruction: a developmental perspective. Sleep 27(5):997–1019 PubMed PMID: 15453561

    Article  PubMed  Google Scholar 

  230. Caples SM, Gami AS, Somers VK (2005) Obstructive sleep apnea. Ann Intern Med 142(3):187–197 PubMed PMID: 15684207

    Article  PubMed  Google Scholar 

  231. Mateika JH, Ellythy M (2003) Chemoreflex control of ventilation is altered during wakefulness in humans with OSA. Respir Physiol Neurobiol 138(1):45–57 PubMed PMID: 14519377

    Article  CAS  PubMed  Google Scholar 

  232. Henderson LA, Woo MA, Macey PM, Macey KE, Frysinger RC, Alger JR et al (2003) Neural responses during Valsalva maneuvers in obstructive sleep apnea syndrome. J Appl Physiol 94(3):1063–1074 PubMed PMID: 12433858

    Article  PubMed  Google Scholar 

  233. Macey PM, Macey KE, Henderson LA, Alger JR, Frysinger RC, Woo MA et al (2003) Functional magnetic resonance imaging responses to expiratory loading in obstructive sleep apnea. Respir Physiol Neurobiol 138(2–3):275–290 PubMed PMID: 14609516

    Article  CAS  PubMed  Google Scholar 

  234. Harper RM, Macey PM, Henderson LA, Woo MA, Macey KE, Frysinger RC et al (2003) fMRI responses to cold pressor challenges in control and obstructive sleep apnea subjects. J Appl Physiol 94(4):1583–1595 PubMed PMID: 12514164

    Article  PubMed  Google Scholar 

  235. Hashimoto K, Ono T, Honda E, Maeda K, Shinagawa H, Tsuiki S et al (2006) Effects of mandibular advancement on brain activation during inspiratory loading in healthy subjects: a functional magnetic resonance imaging study. J Appl Physiol 100(2):579–586 PubMed PMID: 16195387

    Article  PubMed  Google Scholar 

  236. Berry DT, Webb WB, Block AJ, Bauer RM, Switzer DA (1986) Nocturnal hypoxia and neuropsychological variables. J Clin Exp Neuropsychol 8(3):229–238 PubMed PMID: 3722349

    Article  CAS  PubMed  Google Scholar 

  237. Bedard MA, Montplaisir J, Richer F, Rouleau I, Malo J (1991) Obstructive sleep apnea syndrome: pathogenesis of neuropsychological deficits. J Clin Exp Neuropsychol 13(6):950–964 PubMed PMID: 1779033

    Article  CAS  PubMed  Google Scholar 

  238. Bonnet MH (1993) Cognitive effects of sleep and sleep fragmentation. Sleep 16(8 Suppl):S65–S67 PubMed PMID: 8178030

    Article  CAS  PubMed  Google Scholar 

  239. Cheshire K, Engleman H, Deary I, Shapiro C, Douglas NJ (1992) Factors impairing daytime performance in patients with sleep apnea/hypopnea syndrome. Arch Intern Med 152(3):538–541 PubMed PMID: 1546916

    Article  CAS  PubMed  Google Scholar 

  240. George CF, Boudreau AC, Smiley A (1996) Simulated driving performance in patients with obstructive sleep apnea. Am J Respir Crit Care Med 154(1):175–181 PubMed PMID: 8680676

    Article  CAS  PubMed  Google Scholar 

  241. Findley L, Unverzagt M, Guchu R, Fabrizio M, Buckner J, Suratt P (1995) Vigilance and automobile accidents in patients with sleep apnea or narcolepsy. Chest 108(3):619–624 PubMed PMID: 7656606

    Article  CAS  PubMed  Google Scholar 

  242. Findley LJ, Barth JT, Powers DC, Wilhoit SC, Boyd DG, Suratt PM (1986) Cognitive impairment in patients with obstructive sleep apnea and associated hypoxemia. Chest 90(5):686–690 PubMed PMID: 3769569

    Article  CAS  PubMed  Google Scholar 

  243. Young T, Blustein J, Finn L, Palta M (1997) Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep 20(8):608–613 PubMed PMID: 9351127

    Article  CAS  PubMed  Google Scholar 

  244. Naegele B, Thouvard V, Pepin JL, Levy P, Bonnet C, Perret JE et al (1995) Deficits of cognitive executive functions in patients with sleep apnea syndrome. Sleep 18(1):43–52 PubMed PMID: 7761742

    CAS  PubMed  Google Scholar 

  245. Feuerstein C, Naegele B, Pepin JL, Levy P (1997) Frontal lobe-related cognitive functions in patients with sleep apnea syndrome before and after treatment. Acta Neurol Belg 97(2):96–107 PubMed PMID: 9246377

    CAS  PubMed  Google Scholar 

  246. Greenberg GD, Watson RK, Deptula D (1987) Neuropsychological dysfunction in sleep apnea. Sleep 10(3):254–262 PubMed PMID: 3629088

    Article  CAS  PubMed  Google Scholar 

  247. Harrison Y, Horne JA, Rothwell A (2000) Prefrontal neuropsychological effects of sleep deprivation in young adults—a model for healthy aging? Sleep 23(8):1067–1073 PubMed PMID: 11145321

    Article  CAS  PubMed  Google Scholar 

  248. Kotterba S, Rasche K, Widdig W, Duscha C, Blombach S, Schultze-Werninghaus G et al (1998) Neuropsychological investigations and event-related potentials in obstructive sleep apnea syndrome before and during CPAP-therapy. J Neurol Sci 159(1):45–50 PubMed PMID: 9700702

    Article  CAS  PubMed  Google Scholar 

  249. Beebe DW, Groesz L, Wells C, Nichols A, McGee K (2003) The neuropsychological effects of obstructive sleep apnea: a meta-analysis of norm-referenced and case-controlled data. Sleep 26(3):298–307 PubMed PMID: 12749549

    Article  PubMed  Google Scholar 

  250. Thomas RJ, Rosen BR, Stern CE, Weiss JW, Kwong KK (2005) Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol 98(6):2226–2234 PubMed PMID: 15677733

    Article  PubMed  Google Scholar 

  251. Zhang X, Ma L, Li S, Wang Y, Wang L (2011) A functional MRI evaluation of frontal dysfunction in patients with severe obstructive sleep apnea. Sleep Med 12(4):335–340 PubMed PMID: 21398177

    Article  PubMed  Google Scholar 

  252. Prilipko O, Huynh N, Schwartz S, Tantrakul V, Kim JH, Peralta AR et al (2011) Task positive and default mode networks during a parametric working memory task in obstructive sleep apnea patients and healthy controls. Sleep 34(3):293–301A PubMed PMID: 21358846. Pubmed Central PMCID: 3041705

    Google Scholar 

  253. Ayalon L, Ancoli-Israel S, Aka AA, McKenna BS, Drummond SP (2009) Relationship between obstructive sleep apnea severity and brain activation during a sustained attention task. Sleep 32(3):373–381 PubMed PMID: 19294957. Pubmed Central PMCID: 2647791

    Google Scholar 

  254. Ayalon L, Ancoli-Israel S, Drummond SP (2009) Altered brain activation during response inhibition in obstructive sleep apnea. J Sleep Res 18(2):204–208 PubMed PMID: 19302344. Pubmed Central PMCID: 2770011

    Google Scholar 

  255. Ayalon L, Ancoli-Israel S, Klemfuss Z, Shalauta MD, Drummond SP (2006) Increased brain activation during verbal learning in obstructive sleep apnea. Neuroimage. 31(4):1817–1825 PubMed PMID: 16626972

    Article  PubMed  Google Scholar 

  256. Archbold KH, Borghesani PR, Mahurin RK, Kapur VK, Landis CA (2009) Neural activation patterns during working memory tasks and OSA disease severity: preliminary findings. J Clin Sleep Med JCSM Official Publ Am Acad Sleep Med 5(1):21–27 PubMed PMID: 19317377. Pubmed Central PMCID: 2637162

    Google Scholar 

  257. Castronovo V, Canessa N, Strambi LF, Aloia MS, Consonni M, Marelli S et al (2009) Brain activation changes before and after PAP treatment in obstructive sleep apnea. Sleep 32(9):1161–1172 PubMed PMID: 19750921. Pubmed Central PMCID: 2737574

    Google Scholar 

  258. Zhang Q, Wang D, Qin W, Li Q, Chen B, Zhang Y et al (2013) Altered resting-state brain activity in obstructive sleep apnea. Sleep 36(5):651–659 PubMed PMID: 23633747. Pubmed Central PMCID: 3624819

    Google Scholar 

  259. Santarnecchi E, Sicilia I, Richiardi J, Vatti G, Polizzotto NR, Marino D et al (2013) Altered cortical and subcortical local coherence in obstructive sleep apnea: a functional magnetic resonance imaging study. J Sleep Res 22(3):337–347

    Article  PubMed  Google Scholar 

  260. Prilipko O, Huynh N, Schwartz S, Tantrakul V, Kushida C, Paiva T et al (2012) The effects of CPAP treatment on task positive and default mode networks in obstructive sleep apnea patients: an fMRI study. PLoS ONE. 7(12):e47433 PubMed PMID: 23227139. Pubmed Central PMCID: 3515559

    Google Scholar 

  261. Joo EY, Tae WS, Han SJ, Cho JW, Hong SB (2007) Reduced cerebral blood flow during wakefulness in obstructive sleep apnea-hypopnea syndrome. Sleep 30(11):1515–1520 PubMed PMID: 18041484. Pubmed Central PMCID: 2082095

    Google Scholar 

  262. Yaouhi K, Bertran F, Clochon P, Mezenge F, Denise P, Foret J et al (2009) A combined neuropsychological and brain imaging study of obstructive sleep apnea. J Sleep Res 18(1):36–48 PubMed PMID: 19250174

    Article  PubMed  Google Scholar 

  263. Ficker JH, Feistel H, Moller C, Merkl M, Dertinger S, Siegfried W et al (1997) Changes in regional CNS perfusion in obstructive sleep apnea syndrome: initial SPECT studies with injected nocturnal 99mTc-HMPAO. Pneumologie 51(9):926–930 PubMed PMID: 9411446. Veranderungen der regionalen ZNS-Perfusion beim obstruktiven Schlafapnoe-Syndrom: Erste SPECT-Untersuchungen mit nachtlich injiziertem 99mTc-HMPAO

    Google Scholar 

  264. Macey PM, Henderson LA, Macey KE, Alger JR, Frysinger RC, Woo MA et al (2002) Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med 166(10):1382–1387 PubMed PMID: 12421746

    Article  PubMed  Google Scholar 

  265. Morrell MJ, McRobbie DW, Quest RA, Cummin AR, Ghiassi R, Corfield DR (2003) Changes in brain morphology associated with obstructive sleep apnea. Sleep Med 4(5):451–454 PubMed PMID: 14592287

    Article  PubMed  Google Scholar 

  266. Gale SD, Hopkins RO (2004) Effects of hypoxia on the brain: neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc 10(1):60–71 PubMed PMID: 14751008

    Article  PubMed  Google Scholar 

  267. Torelli F, Moscufo N, Garreffa G, Placidi F, Romigi A, Zannino S et al (2011) Cognitive profile and brain morphological changes in obstructive sleep apnea. Neuroimage 54(2):787–793 PubMed PMID: 20888921

    Article  PubMed  Google Scholar 

  268. Dusak A, Ursavas A, Hakyemez B, Gokalp G, Taskapilioglu O, Parlak M (2013) Correlation between hippocampal volume and excessive daytime sleepiness in obstructive sleep apnea syndrome. Eur Rev Med Pharmacol Sci 17(9):1198–1204 PubMed PMID: 23690189

    CAS  PubMed  Google Scholar 

  269. Macey PM, Kumar R, Yan-Go FL, Woo MA, Harper RM (2012) Sex differences in white matter alterations accompanying obstructive sleep apnea. Sleep 35(12):1603–1613 PubMed PMID: 23204603. Pubmed Central PMCID: 3490353

    Google Scholar 

  270. Cross RL, Kumar R, Macey PM, Doering LV, Alger JR, Yan-Go FL et al (2008) Neural alterations and depressive symptoms in obstructive sleep apnea patients. Sleep 31(8):1103–1109 PubMed PMID: 18714782. Pubmed Central PMCID: 2542956

    Google Scholar 

  271. Kamba M, Suto Y, Ohta Y, Inoue Y, Matsuda E (1997) Cerebral metabolism in sleep apnea. Evaluation by magnetic resonance spectroscopy. Am J Respir Crit Care Med 156(1):296–298 PubMed PMID: 9230764

    Article  CAS  PubMed  Google Scholar 

  272. Sarchielli P, Presciutti O, Alberti A, Tarducci R, Gobbi G, Galletti F et al (2008) A 1H magnetic resonance spectroscopy study in patients with obstructive sleep apnea. Eur J Neurol Official J Eur Fed Neurol Soc 15(10):1058–1064 PubMed PMID: 18717729

    CAS  Google Scholar 

  273. Algin O, Gokalp G, Ocakoglu G, Ursavas A, Taskapilioglu O, Hakyemez B (2012) Neurochemical-structural changes evaluation of brain in patients with obstructive sleep apnea syndrome. Eur J Radiol 81(3):491–495 PubMed PMID: 21300501

    Article  PubMed  Google Scholar 

  274. O’Donoghue FJ, Wellard RM, Rochford PD, Dawson A, Barnes M, Ruehland WR et al (2012) Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment. Sleep 35(1):41–48 PubMed PMID: 22215917. Pubmed Central PMCID: 3242686

    Google Scholar 

  275. Alchanatis M, Deligiorgis N, Zias N, Amfilochiou A, Gotsis E, Karakatsani A et al (2004) Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study. Eur Respir J 24(6):980–986 PubMed PMID: 15572542

    Article  CAS  PubMed  Google Scholar 

  276. Alkan A, Sharifov R, Akkoyunlu ME, Kilicarslan R, Toprak H, Aralasmak A et al (2013) MR spectroscopy features of brain in patients with mild and severe obstructive sleep apnea syndrome. Clin Imaging 37(6):989–992 PubMed PMID: 23993754

    Google Scholar 

  277. Bartlett DJ, Rae C, Thompson CH, Byth K, Joffe DA, Enright T et al (2004) Hippocampal area metabolites relate to severity and cognitive function in obstructive sleep apnea. Sleep Med 5(6):593–596 PubMed PMID: 15511707

    Article  PubMed  Google Scholar 

  278. Halbower AC, Degaonkar M, Barker PB, Earley CJ, Marcus CL, Smith PL et al (2006) Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med 3(8):e301 PubMed PMID: 16933960. Pubmed Central PMCID: 1551912

    Google Scholar 

  279. Tonon C, Vetrugno R, Lodi R, Gallassi R, Provini F, Iotti S et al (2007) Proton magnetic resonance spectroscopy study of brain metabolism in obstructive sleep apnoea syndrome before and after continuous positive airway pressure treatment. Sleep 30(3):305–311 PubMed PMID: 17425226

    Article  PubMed  Google Scholar 

  280. Dang-Vu TT (2013) Structural brain modifications in primary insomnia: myth or reality? Sleep 36(7):965–966 PubMed PMID: 23814328. Pubmed Central PMCID: 3669079

    Google Scholar 

  281. Naegele B, Pepin JL, Levy P, Bonnet C, Pellat J, Feuerstein C (1998) Cognitive executive dysfunction in patients with obstructive sleep apnea syndrome (OSAS) after CPAP treatment. Sleep 21(4):392–397 PubMed PMID: 9646384

    Article  CAS  PubMed  Google Scholar 

  282. Bedard MA, Montplaisir J, Malo J, Richer F, Rouleau I (1993) Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airways pressure (CPAP). J Clin Exp Neuropsychol 15(2):330–341 PubMed PMID: 8491855

    Article  CAS  PubMed  Google Scholar 

  283. Allen RP, Picchietti D, Hening WA, Trenkwalder C, Walters AS, Montplaisir J (2003) Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology: a report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med 4(2):101–119

    Google Scholar 

  284. AASM (2005) International classification of sleep disorders, 2nd edn. Diagnostic and coding manual. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  285. Pennestri MH, Whittom S, Adam B, Petit D, Carrier J, Montplaisir J (2006) PLMS and PLMW in healthy subjects as a function of age: prevalence and interval distribution. Sleep 29(9):1183–1187 PubMed PMID: 17040005. Epub 2006/10/17. eng

    Google Scholar 

  286. Trenkwalder C, Walters AS, Hening WA, Chokroverty S, Antonini A, Dhawan V et al (1999) Positron emission tomographic studies in restless legs syndrome. Mov Disord 14(1):141–145 PubMed PMID: 9918358. Epub 1999/01/26. eng

    Google Scholar 

  287. Bucher SF, Seelos KC, Oertel WH, Reiser M, Trenkwalder C (1997) Cerebral generators involved in the pathogenesis of the restless legs syndrome. Ann Neurol. 41(5):639–645 PubMed PMID: 9153526

    Article  CAS  PubMed  Google Scholar 

  288. Spiegelhalder K, Feige B, Paul D, Riemann D, van Elst LT, Seifritz E et al (2008) Cerebral correlates of muscle tone fluctuations in restless legs syndrome: a pilot study with combined functional magnetic resonance imaging and anterior tibial muscle electromyography. Sleep Med 9(2):177–183 PubMed PMID: 17638594. Epub 2007/07/20. eng

    Google Scholar 

  289. Wetter TC, Pollmacher T (1997) Restless legs and periodic leg movements in sleep syndromes. J Neurol 244(4 Suppl 1):S37–S45 PubMed PMID: 9112588

    Article  CAS  PubMed  Google Scholar 

  290. Trenkwalder C, Hening WA, Montagna P, Oertel WH, Allen RP, Walters AS et al (2008) Treatment of restless legs syndrome: an evidence-based review and implications for clinical practice. Mov Disord 23(16):2267–2302 PubMed PMID: 18925578. Epub 2008/10/18. eng

    Google Scholar 

  291. Brodeur C, Montplaisir J, Godbout R, Marinier R (1988) Treatment of restless legs syndrome and periodic movements during sleep with L-dopa: a double-blind, controlled study. Neurology 38(12):1845–1848 PubMed PMID: 3057399

    Article  CAS  PubMed  Google Scholar 

  292. Montplaisir J, Denesle R, Petit D (2000) Pramipexole in the treatment of restless legs syndrome: a follow-up study. European journal of neurology: the official journal of the European Federation of Neurological Societies. 7(Suppl 1):27–31 PubMed PMID: 11054156

    Article  Google Scholar 

  293. Montplaisir J, Lorrain D, Godbout R (1991) Restless legs syndrome and periodic leg movements in sleep: the primary role of dopaminergic mechanism. Eur Neurol 31(1):41–43 PubMed PMID: 2015836

    Article  CAS  PubMed  Google Scholar 

  294. Earley CJ, Kuwabara H, Wong DF, Gamaldo C, Salas R, Brasic J et al (2011) The dopamine transporter is decreased in the striatum of subjects with restless legs syndrome. Sleep 34(3):341–347 PubMed PMID: 21358851. Pubmed Central PMCID: 3041710. Epub 2011/03/02. eng

    Google Scholar 

  295. Turjanski N, Lees AJ, Brooks DJ (1999) Striatal dopaminergic function in restless legs syndrome: 18F-dopa and 11C-raclopride PET studies. Neurology 52(5):932–937 PubMed PMID: 10102408

    Article  CAS  PubMed  Google Scholar 

  296. Ruottinen HM, Partinen M, Hublin C, Bergman J, Haaparanta M, Solin O et al (2000) An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology 54(2):502–504 PubMed PMID: 10668725

    Article  CAS  PubMed  Google Scholar 

  297. Trenkwalder C, Hening WA, Walters AS, Campbell SS, Rahman K, Chokroverty S (1999) Circadian rhythm of periodic limb movements and sensory symptoms of restless legs syndrome. Mov Disord 14(1):102–110 PubMed PMID: 9918351. Epub 1999/01/26. eng

    Google Scholar 

  298. Michaud M, Soucy JP, Chabli A, Lavigne G, Montplaisir J (2002) SPECT imaging of striatal pre- and postsynaptic dopaminergic status in restless legs syndrome with periodic leg movements in sleep. J Neurol 249(2):164–170 PubMed PMID: 11985381

    Article  PubMed  Google Scholar 

  299. Mrowka M, Jobges M, Berding G, Schimke N, Shing M, Odin P (2005) Computerized movement analysis and beta-CIT-SPECT in patients with restless legs syndrome. J Neural Transm 112(5):693–701 PubMed PMID: 15517434. Epub 2004/11/02. eng

    Google Scholar 

  300. Eisensehr I, Wetter TC, Linke R, Noachtar S, von Lindeiner H, Gildehaus FJ et al (2001) Normal IPT and IBZM SPECT in drug-naive and levodopa-treated idiopathic restless legs syndrome. Neurology 57(7):1307–1309 PubMed PMID: 11591854

    Article  CAS  PubMed  Google Scholar 

  301. Linke R, Eisensehr I, Wetter TC, Gildehaus FJ, Popperl G, Trenkwalder C et al (2004) Presynaptic dopaminergic function in patients with restless legs syndrome: are there common features with early Parkinson’s disease? Mov Disord 19(10):1158–1162 PubMed PMID: 15390076

    Article  PubMed  Google Scholar 

  302. Kim KW, Jhoo JH, Lee SB, Lee SD, Kim TH, Kim SE et al (2012) Increased striatal dopamine transporter density in moderately severe old restless legs syndrome patients. Eur J Neurol Official J Eur Fed Neurol Soc 19(9):1213–1218 PubMed PMID: 22435397

    CAS  Google Scholar 

  303. Tribl GG, Asenbaum S, Klosch G, Mayer K, Bonelli RM, Auff E et al (2002) Normal IPT and IBZM SPECT in drug naive and levodopa-treated idiopathic restless legs syndrome. Neurology 59(4):649–650 PubMed PMID: 12196677

    Article  CAS  PubMed  Google Scholar 

  304. Tribl GG, Asenbaum S, Happe S, Bonelli RM, Zeitlhofer J, Auff E (2004) Normal striatal D2 receptor binding in idiopathic restless legs syndrome with periodic leg movements in sleep. Nucl Med Commun 25(1):55–60 PubMed PMID: 15061265

    Article  CAS  PubMed  Google Scholar 

  305. Staedt J, Stoppe G, Kogler A, Riemann H, Hajak G, Munz DL et al (1995) Single photon emission tomography (SPET) imaging of dopamine D2 receptors in the course of dopamine replacement therapy in patients with nocturnal myoclonus syndrome (NMS). J Neural Transm Gen Sect 99(1–3):187–193 PubMed PMID: 8579804. Epub 1995/01/01. eng

    Google Scholar 

  306. Staedt J, Stoppe G, Kogler A, Riemann H, Hajak G, Munz DL et al (1995) Nocturnal myoclonus syndrome (periodic movements in sleep) related to central dopamine D2-receptor alteration. Eur Arch Psychiatry Clin Neurosci 245(1):8–10 PubMed PMID: 7786913. Epub 1995/01/01. eng

    Google Scholar 

  307. Staedt J, Stoppe G, Kogler A, Munz D, Riemann H, Emrich D et al (1993) Dopamine D2 receptor alteration in patients with periodic movements in sleep (nocturnal myoclonus). J Neural Transm Gen Sect 93(1):71–74 PubMed PMID: 8103994. Epub 1993/01/01. eng

    Google Scholar 

  308. Happe S, Pirker W, Klosch G, Sauter C, Zeitlhofer J (2003) Periodic leg movements in patients with Parkinson’s disease are associated with reduced striatal dopamine transporter binding. J Neurol 250(1):83–86 PubMed PMID: 12527997. Epub 2003/01/16. eng

    Google Scholar 

  309. Cervenka S, Palhagen SE, Comley RA, Panagiotidis G, Cselenyi Z, Matthews JC et al (2006) Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding. Brain 129(Pt 8):2017–2028 PubMed PMID: 16816393. Epub 2006/07/04. eng

    Google Scholar 

  310. Stanwood GD, Lucki I, McGonigle P (2000) Differential regulation of dopamine D2 and D3 receptors by chronic drug treatments. J Pharmacol Exp Ther 295(3):1232–1240 PubMed PMID: 11082460. Epub 2000/11/18. eng

    Google Scholar 

  311. Earley CJ, Kuwabara H, Wong DF, Gamaldo C, Salas RE, Brasic JR et al (2013) Increased synaptic dopamine in the putamen in restless legs syndrome. Sleep 36(1):51–57 PubMed PMID: 23288971. Pubmed Central PMCID: 3524542

    Google Scholar 

  312. Allen R (2004) Dopamine and iron in the pathophysiology of restless legs syndrome (RLS). Sleep Med 5(4):385–391 PubMed PMID: 15222997. Epub 2004/06/30. eng

    Google Scholar 

  313. Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P et al (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79(2):225–236 PubMed PMID: 11677250

    Article  CAS  PubMed  Google Scholar 

  314. Berg D, Merz B, Reiners K, Naumann M, Becker G (2005) Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord 20(3):383–385 PubMed PMID: 15486999

    Article  PubMed  Google Scholar 

  315. Allen RP, Barker PB, Wehrl F, Song HK, Earley CJ (2001) MRI measurement of brain iron in patients with restless legs syndrome. Neurology 56(2):263–265 PubMed PMID: 11160969

    Article  CAS  PubMed  Google Scholar 

  316. Earley CJ, P BB, Horska A, Allen RP (2006) MRI-determined regional brain iron concentrations in early- and late-onset restless legs syndrome. Sleep Med 7(5):458–461 PubMed PMID: 16740411. Epub 2006/06/03. eng

    Google Scholar 

  317. Godau J, Klose U, Di Santo A, Schweitzer K, Berg D (2008) Multiregional brain iron deficiency in restless legs syndrome. Mov Disord 23(8):1184–1187 PubMed PMID: 18442125. Epub 2008/04/30. eng

    Google Scholar 

  318. Godau J, Schweitzer KJ, Liepelt I, Gerloff C, Berg D (2007) Substantia nigra hypoechogenicity: definition and findings in restless legs syndrome. Mov Disord 22(2):187–192 PubMed PMID: 17133515. Epub 2006/11/30. eng

    Google Scholar 

  319. Schmidauer C, Sojer M, Seppi K, Stockner H, Hogl B, Biedermann B et al (2005) Transcranial ultrasound shows nigral hypoechogenicity in restless legs syndrome. Ann Neurol 58(4):630–634 PubMed PMID: 16037973. Epub 2005/07/23. eng

    Google Scholar 

  320. Walters AS (2002) Review of receptor agonist and antagonist studies relevant to the opiate system in restless legs syndrome. Sleep Med 3(4):301–304 PubMed PMID: 14592191

    Article  PubMed  Google Scholar 

  321. Barriere G, Cazalets JR, Bioulac B, Tison F, Ghorayeb I (2005) The restless legs syndrome. Prog Neurobiol 77(3):139–165 PubMed PMID: 16300874. Epub 2005/11/23. eng

    Google Scholar 

  322. von Spiczak S, Whone AL, Hammers A, Asselin MC, Turkheimer F, Tings T et al (2005) The role of opioids in restless legs syndrome: an [11C]diprenorphine PET study. Brain 128(Pt 4):906–917 PubMed PMID: 15728657. Epub 2005/02/25. eng

    Google Scholar 

  323. Etgen T, Draganski B, Ilg C, Schroder M, Geisler P, Hajak G et al (2005) Bilateral thalamic gray matter changes in patients with restless legs syndrome. Neuroimage 24(4):1242–1247 PubMed PMID: 15670702

    Article  PubMed  Google Scholar 

  324. Unrath A, Juengling FD, Schork M, Kassubek J (2007) Cortical grey matter alterations in idiopathic restless legs syndrome: an optimized voxel-based morphometry study. Mov Disord. 2007 Sep 15;22(12):1751–1756 PubMed PMID: 17566123. Epub 2007/06/15. eng

    Google Scholar 

  325. Unrath A, Muller HP, Ludolph AC, Riecker A, Kassubek J (2008) Cerebral white matter alterations in idiopathic restless legs syndrome, as measured by diffusion tensor imaging. Mov Disord 23(9):1250–1255 PubMed PMID: 18464282. Epub 2008/05/09. eng

    Google Scholar 

  326. Celle S, Roche F, Peyron R, Faillenot I, Laurent B, Pichot V et al (2010) Lack of specific gray matter alterations in restless legs syndrome in elderly subjects. J Neurol 257(3):344–348 PubMed PMID: 19768657. Epub 2009/09/22. eng

    Google Scholar 

  327. Comley RA, Cervenka S, Palhagen SE, Panagiotidis G, Matthews JC, Lai RY et al (2010) A comparison of gray matter density in restless legs syndrome patients and matched controls using voxel-based morphometry. J Neuroimaging 22(1):28–32 PubMed PMID: 21091816. Epub 2010/11/26. eng

    Google Scholar 

  328. Hornyak M, Ahrendts JC, Spiegelhalder K, Riemann D, Voderholzer U, Feige B et al (2007) Voxel-based morphometry in unmedicated patients with restless legs syndrome. Sleep Med 9(1):22–26 PubMed PMID: 17512782. Epub 2007/05/22. eng

    Google Scholar 

  329. Rizzo G, Manners D, Vetrugno R, Tonon C, Malucelli E, Plazzi G et al (2011) Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients. Eur J Neurol Official J Eur Fed Neurol Soc 19(7):1045–1049 PubMed PMID: 22175823. Epub 2011/12/20. eng

    Google Scholar 

  330. Rizzo G, Tonon C, Testa C, Manners D, Vetrugno R, Pizza F et al (2012) Abnormal medial thalamic metabolism in patients with idiopathic restless legs syndrome. Brain J Neurol 135(Pt 12):3712–3720

    Article  Google Scholar 

  331. Allen RP, Barker PB, Horska A, Earley CJ (2013) Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep. Neurology 80(22):2028–2034 PubMed PMID: 23624560. Pubmed Central PMCID: 3716406

    Google Scholar 

  332. Remulla A, Guilleminault C (2004) Somnambulism (sleepwalking). Expert Opin Pharmacother 5(10):2069–2074 PubMed PMID: 15461542

    Article  CAS  PubMed  Google Scholar 

  333. Bassetti C, Vella S, Donati F, Wielepp P, Weder B (2000) SPECT during sleepwalking. Lancet 356(9228):484–485 PubMed PMID: 10981896

    Article  CAS  PubMed  Google Scholar 

  334. Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW (1986) Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep 9(2):293–308 PubMed PMID: 3505730

    Article  CAS  PubMed  Google Scholar 

  335. Schenck CH, Bundlie SR, Mahowald MW (1996) Delayed emergence of a parkinsonian disorder in 38 % of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology 46(2):388–393 PubMed PMID: 8614500

    Article  CAS  PubMed  Google Scholar 

  336. Gagnon JF, Bedard MA, Fantini ML, Petit D, Panisset M, Rompre S et al (2002) REM sleep behavior disorder and REM sleep without atonia in Parkinson’s disease. Neurology 59(4):585–589 PubMed PMID: 12196654

    Article  CAS  PubMed  Google Scholar 

  337. Gagnon JF, Fantini ML, Bedard MA, Petit D, Carrier J, Rompre S et al (2004) Association between waking EEG slowing and REM sleep behavior disorder in PD without dementia. Neurology 62(3):401–406 PubMed PMID: 14872020

    Article  PubMed  Google Scholar 

  338. Fantini ML, Ferini-Strambi L, Montplaisir J (2005) Idiopathic REM sleep behavior disorder: toward a better nosologic definition. Neurology 64(5):780–786 PubMed PMID: 15753409

    Article  PubMed  Google Scholar 

  339. Plazzi G, Corsini R, Provini F, Pierangeli G, Martinelli P, Montagna P et al (1997) REM sleep behavior disorders in multiple system atrophy. Neurology 48(4):1094–1097 PubMed PMID: 9109907

    Article  CAS  PubMed  Google Scholar 

  340. Gilman S, Koeppe RA, Chervin RD, Consens FB, Little R, An H et al (2003) REM sleep behavior disorder is related to striatal monoaminergic deficit in MSA. Neurology 61(1):29–34 PubMed PMID: 12847152. Epub 2003/07/09. eng

    Google Scholar 

  341. Sakai K, Sastre JP, Salvert D, Touret M, Tohyama M, Jouvet M (1979) Tegmentoreticular projections with special reference to the muscular atonia during paradoxical sleep in the cat: an HRP study. Brain Res 176(2):233–254 PubMed PMID: 227527

    Article  CAS  PubMed  Google Scholar 

  342. Mazza S, Soucy JP, Gravel P, Michaud M, Postuma R, Massicotte-Marquez J et al (2006) Assessing whole brain perfusion changes in patients with REM sleep behavior disorder. Neurology 67(9):1618–1622 PubMed PMID: 17101893

    Article  CAS  PubMed  Google Scholar 

  343. Vendette M, Gagnon J-F, Soucy J-P, Gosselin N, Postuma R, Tuineag M et al (2011) Brain perfusion and markers of neurodegeneration in rapid eye movement sleep behavior disorder. Mov Disord Official J Mov Disord Soc 26(9):1717–1724

    Article  Google Scholar 

  344. Dang-Vu T, Gagnon J-F, Vendette M, Soucy J-P, Postuma R, Montplaisir J (2012) Hippocampal perfusion predicts impending neurodegeneration in REM sleep behavior disorder. Neurology 79(24):2302–2306

    Article  PubMed  PubMed Central  Google Scholar 

  345. Hanyu H, Inoue Y, Sakurai H, Kanetaka H, Nakamura M, Miyamoto T et al (2011) Regional cerebral blood flow changes in patients with idiopathic REM sleep behavior disorder. Eur J Neurol Official J Eur Fed Neurol Soc 18(5):784–788

    CAS  Google Scholar 

  346. Dauvilliers Y, Yves D, Boudousq V, Vincent B, Lopez R, Regis L et al (2011) Increased perfusion in supplementary motor area during a REM sleep behaviour episode. Sleep Med 12(5):531–532

    Article  PubMed  Google Scholar 

  347. Eisensehr I, Linke R, Tatsch K, Kharraz B, Gildehaus JF, Wetter CT et al (2003) Increased muscle activity during rapid eye movement sleep correlates with decrease of striatal presynaptic dopamine transporters. IPT and IBZM SPECT imaging in subclinical and clinically manifest idiopathic REM sleep behavior disorder, Parkinson’s disease, and controls. Sleep 26(5):507–512 PubMed PMID: 12938802

    Article  PubMed  Google Scholar 

  348. Kim YK, Yoon IY, Kim JM, Jeong SH, Kim KW, Shin YK et al (2010) The implication of nigrostriatal dopaminergic degeneration in the pathogenesis of REM sleep behavior disorder. Eur J Neurol Official J Eur Fed Neurol Soc 17(3):487–492 PubMed PMID: 19968708

    CAS  Google Scholar 

  349. Stiasny-Kolster K, Doerr Y, Moller JC, Hoffken H, Behr TM, Oertel WH et al (2005) Combination of ‘idiopathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 128(Pt 1):126–137 PubMed PMID: 15548552

    CAS  PubMed  Google Scholar 

  350. Unger MM, Moller JC, Stiasny-Kolster K, Mankel K, Berg D, Walter U et al (2008) Assessment of idiopathic rapid-eye-movement sleep behavior disorder by transcranial sonography, olfactory function test, and FP-CIT-SPECT. Mov Disord 23(4):596–569 PubMed PMID: 18175346. Epub 2008/01/05. eng

    Google Scholar 

  351. Albin RL, Koeppe RA, Chervin RD, Consens FB, Wernette K, Frey KA et al (2000) Decreased striatal dopaminergic innervation in REM sleep behavior disorder. Neurology 55(9):1410–1412 PubMed PMID: 11087796

    Article  CAS  PubMed  Google Scholar 

  352. Iranzo A, Lomena F, Stockner H, Valldeoriola F, Vilaseca I, Salamero M et al (2010) Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study. Lancet Neurol 9(11):1070–1077 PubMed PMID: 20846908. Epub 2010/09/18. eng

    Google Scholar 

  353. Iranzo A, Tolosa E, Gelpi E, Molinuevo J, Valldeoriola F, Serradell M et al (2013) Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 12(5):443–453

    Article  PubMed  Google Scholar 

  354. Miyamoto TOS, Miyamoto M, Hirata K, Adachi T, Hattori R, Suzuki M, Ishi K (2010) Follow-up PET studies in case of idiopathic REM sleep behavior disorder. Sleep Med 11:100–101

    Google Scholar 

  355. Ellmore T, Hood A, Castriotta R, Stimming E, Bick R, Schiess M (2010) Reduced volume of the putamen in REM sleep behavior disorder patients. Parkinsonism Relat Disord 16(10):645–649

    Article  PubMed  Google Scholar 

  356. Unger M, Belke M, Menzler K, Heverhagen J, Keil B, Stiasny-Kolster K et al (2010) Diffusion tensor imaging in idiopathic REM sleep behavior disorder reveals microstructural changes in the brainstem, substantia nigra, olfactory region, and other brain regions. Sleep 33(6):767–773

    Article  PubMed  PubMed Central  Google Scholar 

  357. Scherfler C, Frauscher B, Schocke M, Iranzo A, Gschliesser V, Seppi K et al (2011) White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study. Ann Neurol 69(2):400–407

    Article  PubMed  Google Scholar 

  358. Vendette M, Montplaisir J, Gosselin N, Soucy JP, Postuma RB, Dang-Vu TT et al (2012) Brain perfusion anomalies in rapid eye movement sleep behavior disorder with mild cognitive impairment. Mov Disord Official J Mov Disord Soc 27(10):1255–1261 PubMed PMID: 22791632. Epub 2012/07/14. eng

    Google Scholar 

  359. Shirakawa S, Takeuchi N, Uchimura N, Ohyama T, Maeda H, Abe T et al (2002) Study of image findings in rapid eye movement sleep behavioural disorder. Psychiatry Clin Neurosci 56(3):291–292 PubMed PMID: 12047600

    Article  PubMed  Google Scholar 

  360. Miyamoto M, Miyamoto T, Kubo J, Yokota N, Hirata K, Sato T (2000) Brainstem function in rapid eye movement sleep behavior disorder: the evaluation of brainstem function by proton MR spectroscopy (1H-MRS). Psychiatry Clin Neurosci 54(3):350–351 PubMed PMID: 11186109. Epub 2001/02/24. eng

    Google Scholar 

  361. Iranzo A, Santamaria J, Pujol J, Moreno A, Deus J, Tolosa E (2002) Brainstem proton magnetic resonance spectroscopy in idopathic REM sleep behavior disorder. Sleep 25(8):867–870 PubMed PMID: 12489892

    Article  PubMed  Google Scholar 

  362. Hanoglu L, Ozer F, Meral H, Dincer A (2006) Brainstem 1H-MR spectroscopy in patients with Parkinson’s disease with REM sleep behavior disorder and IPD patients without dream enactment behavior. Clin Neurol Neurosurg 108(2):129–134 PubMed PMID: 15936138. Epub 2005/06/07. eng

    Google Scholar 

Download references

Acknowledgments

Dr. Dang-Vu receives research support from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de Recherche du Québec—Santé (FRQS), and the Sleep Research Society Foundation (SRSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thien Thanh Dang-Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dang-Vu, T.T. et al. (2017). Neuroimaging in Normal and Abnormal Sleep. In: Chokroverty, S. (eds) Sleep Disorders Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6578-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6578-6_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6576-2

  • Online ISBN: 978-1-4939-6578-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics