Skip to main content

Catching Uncertainty of Wind: A Blend of Sieve Bootstrap and Regime Switching Models for Probabilistic Short-Term Forecasting of Wind Speed

  • Chapter
  • First Online:
Advances in Time Series Methods and Applications

Part of the book series: Fields Institute Communications ((FIC,volume 78))

Abstract

Although clean and sustainable wind energy has long been recognized as one of the most attractive electric power sources, generation of wind power is still much easier than its integration into liberalized electricity markets. One of the key obstacles on the way of wider implementation of wind energy is its highly volatile and intermittent nature. This has boosted an interest in developing a fully probabilistic forecast of wind speed, aiming to assess a variety of related uncertainties. Nonetheless, most of the available methodology for constructing a future predictive density for wind speed are based on parametric distributional assumptions on the observed wind data, and such conditions are often too restrictive and infeasible in practice. In this paper we propose a new nonparametric data-driven approach to probabilistic wind speed forecasting, adaptively combining sieve bootstrap and regime switching models. Our new bootstrapped regime switching (BRS) model delivers highly competitive, sharp and calibrated ensembles of wind speed forecasts, governed by various states of wind direction, and imposes minimal requirements on the observed wind data. The proposed methodology is illustrated by developing probabilistic wind speed forecasts for a site in the Washington State, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowski, J., & Posorski, R. (2000). Wind energy in developing countries. DEWI Magazine, 16, 46–53.

    Google Scholar 

  2. Agrawal, M. R., Boland, J., & Ridley, B. (2013). Analysis of wind farm output: Estimation of volatility using high-frequency data. Environmental Modeling & Assessment, 18(4), 481–492.

    Article  Google Scholar 

  3. Alexiadis, M. C., Dokopoulos, P. S., & Sahsamanoglou, H. S. (1999). Wind speed and power forecasting based on spatial correlation models. IEEE Transactions on Energy Conversion, 14(3), 836–842.

    Article  Google Scholar 

  4. Alonso, A. M., Peña, D., & Romo, J. (2002). Forecasting time series with sieve bootstrap. Journal of Statistical Planning and Inference, 100, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  5. Anastasiades, G., & McSharry, P. (2013). Quantile forecasting of wind power using variability indices. Energies, 6(2), 662–695.

    Article  Google Scholar 

  6. Bos, R., De Waele, S., & Broersen, P. M. T. (2002). Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Transactions on Instrumentation and Measurement, 51(6), 1289–1294.

    Article  Google Scholar 

  7. Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 3(2), 123–148.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bühlmann, P. (2002). Bootstraps for time series. Statistical Science, 17(1), 52–72.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, B., Gel, Y. R., Balakrishna, N., & Abraham, B. (2011). Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes. Journal of Forecasting, 30(1), 51–71.

    Article  MathSciNet  MATH  Google Scholar 

  10. Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., & Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6), 1725–1744.

    Article  Google Scholar 

  11. Efron, B. (1982). The jackknife, the bootstrap and other resampling plans (Vol. 38). Society of Industrial and Applied Mathematics CBMS-NSF Monographs.

    Google Scholar 

  12. Epstein, E. S. (1969). A scoring system for probability forecasts of ranked categories. Journal of Applied Meteorology, 8(6), 985–987.

    Article  Google Scholar 

  13. Erdogan, E., Ma, S., Beygelzimer, A., & Rish, I. (2004). Statistical models for unequally spaced time series. In Proceedings of the Fifth SIAM International Conference on Data Mining, SIAM, pp. 626–630.

    Google Scholar 

  14. Gel, Y., Raftery, A. E., & Gneiting, T. (2004). Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation method. Journal of the American Statistical Association, 99(467), 575–583.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gneiting, T., Raftery, A. E., Westveld, A. H, I. I. I., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133(5), 1098–1118.

    Article  Google Scholar 

  17. Gneiting, T., Larson, K., Westrick, K., Genton, M. G., & Aldrich, E. (2006). Calibrated probabilistic forecasting at the Stateline wind energy center: The regime-switching space-time method. Journal of the American Statistical Association, 101(475), 968–979.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gray, B. R., Lyubchich, V., Gel, Y. R., Rogala, J. T., Robertson, D. M., & Wei, X. (2016). Estimation of river and stream temperature trends under haphazard sampling. Statistical Methods & Applications, 25(1), 89–105.

    Google Scholar 

  19. Hamill, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review, 129(3), 550–560.

    Article  Google Scholar 

  20. Hering, A. S., & Genton, M. G. (2010). Powering up with space-time wind forecasting. Journal of the American Statistical Association, 105(489), 92–104.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeon, J., & Taylor, J. W. (2012). Using conditional kernel density estimation for wind power density forecasting. Journal of the American Statistical Association, 107(497), 66–79.

    Article  MathSciNet  MATH  Google Scholar 

  22. Juban, J., Siebert, N., & Kariniotakis, G. N. (2007). Probabilistic short-term wind power forecasting for the optimal management of wind generation. In Proceedings of 2007 IEEE Lausanne Power Tech, pp. 683–688.

    Google Scholar 

  23. Kreiss, J. P., & Franke, J. (1992). Bootstrapping stationary autoregressive moving-average models. Journal of Time Series Analysis, 13(4), 297–317.

    Article  MathSciNet  MATH  Google Scholar 

  24. Larson, K. A., & Westrick, K. (2006). Short-term wind forecasting using off-site observations. Wind Energy, 9(1–2), 55–62.

    Article  Google Scholar 

  25. Lau, A., & McSharry, P. (2010). Approaches for multi-step density forecasts with application to aggregated wind power. The Annals of Applied Statistics, 4(3), 1311–1341.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lyubchich, V., Gray, B. R., & Gel, Y. R. (2015). Multilevel random slope approach and nonparametric inference for river temperature, under haphazard sampling. In Machine learning and data mining approaches to climate science (pp. 137–145). Cham: Springer.

    Google Scholar 

  27. McCulloch, R. E., & Tsay, R. S. (1994). Statistical analysis of economic time series via Markov switching models. Journal of Time Series Analysis, 15(5), 523–539.

    Article  MathSciNet  MATH  Google Scholar 

  28. Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., & Conzelmann, G. (2009). Wind power forecasting: State-of-the-art 2009. Tech. Rep. ANL/DIS-10-1, Decision and Information Sciences Division, Argonne National Laboratory (ANL).

    Google Scholar 

  29. Murphy, A. H. (1969). On the "ranked probability score". Journal of Applied Meteorology, 8(6), 988–989.

    Article  Google Scholar 

  30. Palomares-Salas, J. C., de la Rosa, J. J. G., Ramiro, J. G., Melgar, J., Agüera, A., & Moreno, A. (2009). Comparison of models for wind speed forecasting. In Proceedings of The International Conference on Computational Science (ICCS).

    Google Scholar 

  31. Pinson, P. (2012). Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(4), 555–576.

    Article  MathSciNet  Google Scholar 

  32. Pinson, P. (2013). Wind energy: Forecasting challenges for its operational management. Statistical Science, 28(4), 564–585.

    Article  MathSciNet  MATH  Google Scholar 

  33. Pinson, P., & Kariniotakis, G. (2010). Conditional prediction intervals of wind power generation. IEEE Transactions on Power Systems, 25(4), 1845–1856.

    Article  Google Scholar 

  34. Pinson, P., & Madsen, H. (2012). Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. Journal of Forecasting, 31(4), 281–313.

    Article  MathSciNet  Google Scholar 

  35. Politis, D. N. (2003). The impact of bootstrap methods on time series analysis. Statistical Science, 18(2), 219–230.

    Article  MathSciNet  MATH  Google Scholar 

  36. Tascikaraoglu, A., & Uzunoglu, M. (2014). A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews, 34, 243–254.

    Article  Google Scholar 

  37. Wald, M. L. (2008). The energy challenge: Wind energy bumps into power grid’s limits. New York: New York Times.

    Google Scholar 

  38. Wan, C., Xu, Z., Pinson, P., Dong, Z. Y., & Wong, K. P. (2014). Optimal prediction intervals of wind power generation. IEEE Transactions on Power Systems, 29(3), 1166–1174.

    Article  Google Scholar 

  39. Wang, X., Guo, P., & Huang, X. (2011). A review of wind power forecasting models. Energy Procedia, 12, 770–778.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Bonneville Power Administration and the Oregon State University Energy Resources Research Laboratory, particularly, Stel Walker, for the generosity in providing the wind speed and direction data. We would like to thank William Weimin Yoo and Kimihiro Noguchi for the help at the initial stage of this project. Research of Ejaz Ahmed is supported in part by the Grant from the Natural Sciences and Engineering Research Council of Canada, and Yulia R. Gel is supported in part by the National Science Foundation Grant DMS1514808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia R. Gel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gel, Y.R., Lyubchich, V., Ahmed, S.E. (2016). Catching Uncertainty of Wind: A Blend of Sieve Bootstrap and Regime Switching Models for Probabilistic Short-Term Forecasting of Wind Speed. In: Li, W., Stanford, D., Yu, H. (eds) Advances in Time Series Methods and Applications . Fields Institute Communications, vol 78. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6568-7_14

Download citation

Publish with us

Policies and ethics