Skip to main content

Nutritional Aspects of Phosphorus Compounds in Foods

  • Chapter
  • First Online:
Clinical Aspects of Natural and Added Phosphorus in Foods

Part of the book series: Nutrition and Health ((NH))

Abstract

Although phosphorus is an obligate nutrient in the human diet, the nutritional need for phosphorus has been recently overshadowed by the focus on the detrimental effects of hyperphosphatemia. In this chapter, we describe the measurement of phosphorus balance as a technique for assessing dietary phosphorus needs and the current guidelines for phosphorus intake according to age, gender, and certain clinical conditions. Special populations including those with CKD and previously nutritionally deprived patients require specific attention to their dietary phosphorus intake and monitoring of their serum phosphate. Their phosphorus intake must be evaluated in concert with assessment of any other nutritional deficiencies and requirements. This is necessary in order to ascertain whether these other disorders may modify phosphorus needs and to ensure that adequate intake of all nutrients is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

AI:

Adequate Intake

Ca:

Calcium

DRI:

Dietary Reference Intakes

DXA:

Dual energy x-ray absorptiometry

EAR:

Estimated Average Requirement

ECF:

Extracellular fluid

ELBW:

Extremely low birth weight

FGF23:

Fibroblast growth factor 23

GFR:

Glomerular filtration rate

Pi:

Inorganic phosphorus

IOM:

Institute of Medicine

ICU:

Intensive care unit

MBD:

Metabolic bone disease

NHANES:

National Health and Nutrition Education Survey

NICE:

National Institute of Health and Clinical Excellence

PTH:

Parathyroid hormone

PN:

Parenteral nutrition

P:

Phosphorus

RDA:

Recommended Dietary Allowance

RFS:

Refeeding syndrome

UL:

Tolerable Upper Intake

VLBW:

Very low birth weight

References

  1. Anderson JB. Overview of relationship between diet and bone. Diet, nutrients, and bone health. Boca Raton: CRC Press; 2012.

    Google Scholar 

  2. Calvo SM. Inorganic phosphorus: do higher dietary levels affect phosphorus homeostasis and bone? In: Anderson JJB, Garner SC, Klemmer PJ, editors. Diet, nutrients, and bone health. Boca Raton: CRC Press; 2012. p. 141–56.

    Google Scholar 

  3. IOM. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1997.

    Google Scholar 

  4. Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed Central  Google Scholar 

  5. Heaney RP. Phosphorus nutrition and the treatment of osteoporosis. Mayo Clin Proc. 2004;79(1):91–7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  CAS  PubMed  Google Scholar 

  6. Shapiro R, Heaney RP. Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone. 2003;32(5):532–40 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez-Parra E, Tunon J, Egido J, Ortiz A. Phosphate: a stealthier killer than previously thought? Cardiovasc Pathol. 2012;21(5):372–81 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  8. Huang CL, Moe OW. Clinical assessment of phosphorus status, balance and renal handling in normal individuals and in patients with chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(4):452–8 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  Google Scholar 

  9. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370(9588):657–66 [Meta-Analysis Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  10. Goretti M, Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012;27(11):2039–48 [Review].

    Article  Google Scholar 

  11. Otten JJ, Hellwig JP, Meyers LD. DRI, dietary reference intakes : the essential guide to nutrient requirements. Washington, DC: National Academies Press; 2006.

    Google Scholar 

  12. Bergman C, Gray-Scott D, Chen JJ, Meacham S. What is next for the Dietary Reference Intakes for bone metabolism related nutrients beyond calcium: phosphorus, magnesium, vitamin D, and fluoride? Crit Rev Food Sci Nutr. 2009;49(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  13. Calvo MS, Uribarri J. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am J Clin Nutr. 2013;98(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  14. Moshfegh A, Goldman J, Ahuja JK, Rhodes D, LaComb R. What we eat in America. NHANES 2009–2010. In: Service UAR, editor. Usual nutrient intakes from food and water compared to 1997 dietary reference intake for vitamin D, calcium, phosphorus and magnesium. 2009. Available online: http://www.ars.usda.gov/ba/bhnrc/fsrg

  15. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008;156(3):556–63 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  16. Calvo MS, Park YK. Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J Nutr. 1996;126(4 Suppl):1168S–80 [Review].

    CAS  PubMed  Google Scholar 

  17. Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299(2):F285–96 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  18. Anderson JJB, Klemmer PJ, Watts MES, et al., editors. Phosphorus. 9th ed. Washington, DC: ILSI Press; 2006.

    Google Scholar 

  19. Lemann Jr J, Gray RW, Maierhofer WJ, Cheung HS. The importance of renal net acid excretion as a determinant of fasting urinary calcium excretion. Kidney Int. 1986;29(3):743–6 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  20. Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97(11):2534–40. [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calvo MS, Kumar R, Heath 3rd H. Elevated secretion and action of serum parathyroid hormone in young adults consuming high phosphorus, low calcium diets assembled from common foods. J Clin Endocrinol Metab. 1988;66(4):823–9 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  22. Calvo MS, Kumar R, Heath H. Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab. 1990;70(5):1334–40 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  23. McGovern AP, de Lusignan S, van Vlymen J, Liyanage H, Tomson CR, Gallagher H, et al. Serum phosphate as a risk factor for cardiovascular events in people with and without chronic kidney disease: a large community based cohort study. PLoS One. 2013;8(9):e74996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berndt TJ, Schiavi S, Kumar R. “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol. 2005;289(6):F1170–82 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  25. Alizadeh Naderi AS, Reilly RF. Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol. 2010;6(11):657–65 [Review].

    Article  CAS  PubMed  Google Scholar 

  26. Farrow EG, White KE. Recent advances in renal phosphate handling. Nat Rev Nephrol. 2010;6(4):207–17 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alon US. Clinical practice. Fibroblast growth factor (FGF)23: a new hormone. Eur J Pediatr. 2011;170(5):545–54 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  28. Nordin B. Phosphorus. J Food Nutr. 1988;45:62–75.

    Google Scholar 

  29. Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(4):481–7 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  Google Scholar 

  30. Calvo MS, Eastell R, Offord KP, Bergstralh EJ, Burritt MF. Circadian variation in ionized calcium and intact parathyroid hormone: evidence for sex differences in calcium homeostasis. J Clin Endocrinol Metab. 1991;72(1):69–76 [Comparative Study Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  31. Portale AA, Halloran BP, Morris Jr RC. Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J Clin Invest. 1987;80(4):1147–54 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Portale AA, Halloran BP, Morris Jr RC. Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphorus in normal men. J Clin Invest. 1989;83(5):1494–9 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adeney KL, Siscovick DS, Ix JH, Seliger SL, Shlipak MG, Jenny NS, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol. 2009;20(2):381–7 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432–9 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dominguez JR, Shlipak MG, Whooley MA, Ix JH. Fractional excretion of phosphorus modifies the association between fibroblast growth factor-23 and outcomes. J Am Soc Nephrol. 2013;24(4):647–54 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lim K, Lu TS, Molostvov G, Lee C, Lam FT, Zehnder D, et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125(18):2243–55 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  37. Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser. 1985;724:1–206.

    Google Scholar 

  38. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5 Suppl):1169–75.

    CAS  PubMed  Google Scholar 

  39. Ellis KJ, Abrams SA, Wong WW. Body composition of a young, multiethnic female population. Am J Clin Nutr. 1997;65(3):724–31 [Comparative Study Research Support, U.S. Gov’t, Non-P.H.S.].

    CAS  PubMed  Google Scholar 

  40. Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston Jr CC. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125(2):201–7 [Clinical Trial Randomized Controlled Trial].

    Article  CAS  PubMed  Google Scholar 

  41. Cohen RS, McCallie KR. Feeding premature infants: why, when, and what to add to human milk. JPEN J Parenter Enteral Nutr. 2012;36(1 Suppl):20S–4 [Review].

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell SM, Rogers SP, Hicks PD, Hawthorne KM, Parker BR, Abrams SA. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr. 2009;9:47 [Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed Central  Google Scholar 

  43. Abrams SA. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics. 2013;131(5):e1676–83 [Review].

    Article  PubMed  Google Scholar 

  44. Atkinson SA. Calcium, phosphorus and vitamin D needs of low birthweight infants on various feedings. Acta Paediatr Scand Suppl. 1989;351:104–8 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  45. Fewtrell MS, Williams JE, Singhal A, Murgatroyd PR, Fuller N, Lucas A. Early diet and peak bone mass: 20 year follow-up of a randomized trial of early diet in infants born preterm. Bone. 2009;45(1):142–9 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  Google Scholar 

  46. Amato D, Maravilla A, Montoya C, Gaja O, Revilla C, Guerra R, et al. Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Rev Invest Clin. 1998;50(3):185–9.

    CAS  PubMed  Google Scholar 

  47. Raisz LG, Niemann I. Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology. 1969;85(3):446–52 [In Vitro].

    Article  CAS  PubMed  Google Scholar 

  48. Hunter WL, Arsenault AL, Hodsman AB. Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: a model of vascular arrest and angiogenesis renewed. Anat Rec. 1991;229(4):453–61 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  49. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev. 2012;70(6):311–21 [Review].

    Article  PubMed  Google Scholar 

  50. Lotz M, Zisman E, Bartter FC. Evidence for a phosphorus-depletion syndrome in man. N Engl J Med. 1968;278(8):409–15.

    Article  CAS  Google Scholar 

  51. Kemi VE, Karkkainen MU, Rita HJ, Laaksonen MM, Outila TA, Lamberg-Allardt CJ. Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br J Nutr. 2010;103(4):561–8 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  52. Sax L. The institute of medicine’s “dietary reference intake” for phosphorus: a critical perspective. J Am Coll Nutr. 2001;20(4):271–8 [Review].

    Article  CAS  PubMed  Google Scholar 

  53. Kemi VE, Rita HJ, Karkkainen MU, Viljakainen HT, Laaksonen MM, Outila TA, et al. Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: a cross-sectional study on healthy premenopausal women. Public Health Nutr. 2009;12(10):1885–92 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  54. Reiss E, Canterbury JM, Bercovitz MA, Kaplan EL. The role of phosphate in the secretion of parathyroid hormone in man. J Clin Invest. 1970;49(11):2146–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heaney RP. Protein and calcium: antagonists or synergists? Am J Clin Nutr. 2002;75(4):609–10 [Comment Editorial].

    CAS  PubMed  Google Scholar 

  56. Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1998;128(10):801–9 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  57. Fukumoto S, Shimizu Y. Fibroblast growth factor 23 as a phosphotropic hormone and beyond. J Bone Miner Metab. 2011;29(5):507–14 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  58. Osuka S, Razzaque MS. Can features of phosphate toxicity appear in normophosphatemia? J Bone Miner Metab. 2012;30(1):10–8 [Research Support, N.I.H., Extramural Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Metz JA, Anderson JJ, Gallagher Jr PN. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am J Clin Nutr. 1993;58(4):537–42.

    CAS  PubMed  Google Scholar 

  60. Shorr E, Carter AC. Aluminum gels in the management of renal phosphatic calculi. J Am Med Assoc. 1950;144(18):1549–56.

    Article  CAS  PubMed  Google Scholar 

  61. Behets GJ, Dams G, Damment SJ, Martin P, De Broe ME, D’Haese PC. Differences in gastrointestinal calcium absorption after the ingestion of calcium-free phosphate binders. Am J Physiol Renal Physiol. 2014;306(1):F61–7 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  62. Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP. Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: The Framingham Osteoporosis Study. Am J Clin Nutr. 2006;84(4):936–42 [Comparative Study Research Support, N.I.H., Extramural].

    CAS  PubMed  Google Scholar 

  63. Karp H, Ekholm P, Kemi V, Itkonen S, Hirvonen T, Narkki S, et al. Differences among total and in vitro digestible phosphorus content of plant foods and beverages. J Ren Nutr. 2012;22(4):416–22 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  64. Kraft MD, Btaiche IF, Sacks GS. Review of the refeeding syndrome. Nutr Clin Pract. 2005;20(6):625–33 [Review].

    Article  PubMed  Google Scholar 

  65. Khan LU, Ahmed J, Khan S, Macfie J. Refeeding syndrome: a literature review. Gastroenterol Res Pract. 2011;2011–16.

    Google Scholar 

  66. Stanga Z, Brunner A, Leuenberger M, Grimble RF, Shenkin A, Allison SP, et al. Nutrition in clinical practice-the refeeding syndrome: illustrative cases and guidelines for prevention and treatment. Eur J Clin Nutr. 2008;62(6):687–94 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  67. Hernandez-Aranda JC, Gallo-Chico B, Luna-Cruz ML, Rayon-Gonzalez MI, Flores-Ramirez LA, Ramos Munoz R, et al. Malnutrition and total parenteral nutrition: a cohort study to determine the incidence of refeeding syndrome. Rev Gastroenterol Mex. 1997;62(4):260–5 [Comparative Study].

    CAS  PubMed  Google Scholar 

  68. Marik PE, Bedigian MK. Refeeding hypophosphatemia in critically ill patients in an intensive care unit. A prospective study. Arch Surg. 1996;131(10):1043–7.

    Article  CAS  PubMed  Google Scholar 

  69. Gonzalez Avila G, Fajardo Rodriguez A, Gonzalez Figueroa E. The incidence of the refeeding syndrome in cancer patients who receive artificial nutritional treatment. Nutr Hosp. 1996;11(2):98–101.

    CAS  PubMed  Google Scholar 

  70. Hill GL, Bradley JA, Smith RC, Smith AH, McCarthy ID, Oxby CB, et al. Changes in body weight and body protein with intravenous nutrition. JPEN J Parenter Enteral Nutr. 1979;3(4):215–8.

    Article  CAS  PubMed  Google Scholar 

  71. Shils ME, Shike M. Modern nutrition in health and disease. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  72. Tresley J, Sheean PM. Refeeding syndrome: recognition is the key to prevention and management. J Am Diet Assoc. 2008;108(12):2105–8 [Case Reports].

    Article  CAS  PubMed  Google Scholar 

  73. Boateng AA, Sriram K, Meguid MM, Crook M. Refeeding syndrome: treatment considerations based on collective analysis of literature case reports. Nutrition. 2010;26(2):156–67 [Case Reports Review].

    Article  Google Scholar 

  74. Crook MA, Hally V, Panteli JV. The importance of the refeeding syndrome. Nutrition. 2001;17(7–8):632–7 [Review].

    Article  CAS  PubMed  Google Scholar 

  75. Kulick D, Deen D. Specialized nutrition support. Am Fam Physician. 2011;83(2):173–83 [Review].

    PubMed  Google Scholar 

  76. Ferrone M, Geraci M. A review of the relationship between parenteral nutrition and metabolic bone disease. Nutr Clin Pract. 2007;22(3):329–39 [Review].

    Article  PubMed  Google Scholar 

  77. Hurley DL, McMahon MM. Long-term parenteral nutrition and metabolic bone disease. Endocrinol Metab Clin North Am. 1990;19(1):113–31 [Review].

    CAS  PubMed  Google Scholar 

  78. Sloan GM, White DE, Murray MS, Brennan F. Calcium and phosphorus metabolism during total parenteral nutrition. Ann Surg. 1983;197(1):1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Knight P, Heer D, Abdenour G. CaxP and Ca/P in the parenteral feeding of preterm infants. JPEN J Parenter Enteral Nutr. 1983;7(2):110–4.

    Article  CAS  PubMed  Google Scholar 

  80. Pelegano JF, Rowe JC, Carey DE, LaBarre DJ, Raye JR, Edgren KW, et al. Simultaneous infusion of calcium and phosphorus in parenteral nutrition for premature infants: use of physiologic calcium/phosphorus ratio. J Pediatr. 1989;114(1):115–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  81. Pettifor JM, Thandrayen K. Hypophosphatemic rickets: unraveling the role of FGF23. Calcif Tissue Int. 2012;91(5):297–306 [Review].

    Article  CAS  PubMed  Google Scholar 

  82. Amanzadeh J, Reilly Jr RF. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol. 2006;2(3):136–48 [Review].

    Article  CAS  PubMed  Google Scholar 

  83. Geerse DA, Bindels AJ, Kuiper MA, Roos AN, Spronk PE, Schultz MJ. Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care. 2010;14(4):R147 [Review].

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shor R, Halabe A, Rishver S, Tilis Y, Matas Z, Fux A, et al. Severe hypophosphatemia in sepsis as a mortality predictor. Ann Clin Lab Sci. 2006;36(1):67–72.

    Google Scholar 

  85. Cohen J, Kogan A, Sahar G, Lev S, Vidne B, Singer P. Hypophosphatemia following open heart surgery: incidence and consequences. Eur J Cardiothorac Surg. 2004;26(2):306–10.

    Article  PubMed  Google Scholar 

  86. Camp MA, Allon M. Severe hypophosphatemia in hospitalized patients. Miner Electrolyte Metab. 1990;16(6):365–8.

    CAS  PubMed  Google Scholar 

  87. Felsenfeld AJ, Levine BS. Approach to treatment of hypophosphatemia. Am J Kidney Dis. 2012;60(4):655–61 [Case Reports Review].

    Article  CAS  PubMed  Google Scholar 

  88. Lentz RD, Brown DM, Kjellstrand CM. Treatment of severe hypophosphatemia. Ann Intern Med. 1978;89(6):941–4 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  89. Gonzalez-Parra E, Gracia-Iguacel C, Egido J, Ortiz A. Phosphorus and nutrition in chronic kidney disease. Int J Nephrol. 2012;2012:597605.

    Article  PubMed  PubMed Central  Google Scholar 

  90. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(4 Suppl 3):S1–201. [Guideline Practice Guideline].

    Google Scholar 

  91. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(3):519–30 [Research Support, N.I.H., Extramural Review].

    Article  CAS  PubMed  Google Scholar 

  92. Shinaberger CS, Greenland S, Kopple JD, Van Wyck D, Mehrotra R, Kovesdy CP, et al. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am J Clin Nutr. 2008;88(6):1511–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huber L, Naik M, Budde K. Frequency and long-term outcomes of post-transplant hypophosphatemia after kidney transplantation. Transpl Int. 2013;26(10):e94–6 [Letter].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachelle Bross PhD, RD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bross, R., Shah, A., Kopple, J.D. (2017). Nutritional Aspects of Phosphorus Compounds in Foods. In: Gutiérrez, O., Kalantar-Zadeh, K., Mehrotra, R. (eds) Clinical Aspects of Natural and Added Phosphorus in Foods. Nutrition and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6566-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6566-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6564-9

  • Online ISBN: 978-1-4939-6566-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics