Skip to main content

Phosphorus and Cardiovascular Disease

  • Chapter
  • First Online:
  • 726 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

During the last two decades, it has become increasingly clear that chronic kidney disease (CKD) represents one of the most powerful cardiovascular (CV) and mortality risk factors. When trying to single out CKD-associated metabolic disturbances with immediate pathophysiological impact in this context, mineral and bone disorders (CKD-MBD) and especially hyperphosphatemia were identified as potential candidate triggers for cardiovascular disease and clinical events. Large epidemiological trials were supportive that elevated serum phosphate concentrations are associated with all-cause and cardiovascular mortality, especially in patients on dialysis, but also in predialysis patients and even in normal populations. Hyperphosphatemia is strongly linked to cardiovascular calcification by a pathobiological phenomenon termed “osteochondrogenic transdifferentiation” of vascular smooth muscle cells (VSMC) leading to an unwanted bone-like remodeling of the arterial vessel wall. The functional consequences of this process are arterial stiffness and an increased pulse wave velocity, contributing to the development of left ventricular hypertrophy and heart failure. Dietary phosphate restriction and phosphate binder treatments are thus applied in order to modify this risk factor, although randomized controlled trials are currently still missing, which prove the concept that phosphate lowering leads to improved longevity and prevents cardiovascular events. However, because of its high biological plausibility and an overwhelming observational data basis, current guidelines recommend that phosphate management is among the key therapeutic goals in the prevention of CKD-associated cardiovascular disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70.

    Article  PubMed  Google Scholar 

  2. Ketteler M, Wolf M, Hahn K, Ritz E. Phosphate: a novel cardiovascular risk factor. Eur Heart J. 2013;34(15):1099–101.

    Article  PubMed  Google Scholar 

  3. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  PubMed  Google Scholar 

  4. Kestenbaum B, Sampson JN, Rudser KD, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16(2):520–8.

    Article  CAS  PubMed  Google Scholar 

  5. Dhingra R, et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med. 2007;167:879–85.

    Article  CAS  PubMed  Google Scholar 

  6. Ketteler M, Schlieper G, Floege J. Calcification and cardiovascular health: new insights into an old phenomenon. Hypertension. 2006;47:1027–34.

    Article  CAS  PubMed  Google Scholar 

  7. Giachelli CM. The emerging role of phosphate in vascular calcification. Kidney Int. 2009;75:890–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jahnen-Dechent W, Heiss A, Schäfer C, Ketteler M. Fetuin-A regulation of calcified matrix metabolism. Circ Res. 2011;108(12):1494–509.

    Article  CAS  PubMed  Google Scholar 

  9. Ketteler M, Rothe H, Krüger T, Biggar PH, Schlieper G. Mechanisms and treatment of extraosseous calcification in chronic kidney disease. Nat Rev Nephrol. 2011;7(9):509–16.

    CAS  PubMed  Google Scholar 

  10. Jono S, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87:E10–7.

    Article  CAS  PubMed  Google Scholar 

  11. Moe SM, et al. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int. 2002;61:638–47.

    Article  PubMed  Google Scholar 

  12. Shroff RC, et al. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol. 2010;21:103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shuto E, Taketani Y, Tanaka R, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 2009;20:1504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Marco GS, Konig M, Stock C, et al. High phosphate directly affects endothelial function by downregulating annexin II. Kidney Int. 2013;83:213–22.

    Article  PubMed  Google Scholar 

  15. Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol. 2013;9(11):650–60.

    Article  CAS  PubMed  Google Scholar 

  16. Schlieper G, et al. Ultrastructural analysis of vascular calcifications in uremia. J Am Soc Nephrol. 2010;21:689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heiss A, et al. Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem. 2008;283:14815–25.

    Article  CAS  PubMed  Google Scholar 

  18. Hamano T, et al. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J Am Soc Nephrol. 2010;21:1998–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pasch A, Farese S, Gräber S, Wald J, Richtering W, Floege J, Jahnen-Dechent W. Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol. 2012;23(10):1744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. 2009;113(Suppl):S1–S130.

    Google Scholar 

  21. Ritz E, Hahn K, Ketteler M, Kuhlmann MK, Mann J. Phosphate additives in food – a health risk. Dtsch Arztebl Int. 2012;109:49–55.

    PubMed  PubMed Central  Google Scholar 

  22. Drüeke T, Locatelli F, Clyne N, et al. Normalisation of haemoglobin level in patients with chronic kidney disease III-IV and anaemia. N Engl J Med. 2006;355:2071–84.

    Article  PubMed  Google Scholar 

  23. Singh AK, Szczech L, Tang KL, et al. Correction of anaemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355:2085–98.

    Article  CAS  PubMed  Google Scholar 

  24. Pfeffer MA, Burdmann EA, Chen CY, et al., for the TREAT Investigators. A trial of darbepoetinalfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–32.

    Google Scholar 

  25. Chertow GM, Burke SK, Raggi P, Treat to Goal Working Group. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62:245–52.

    Google Scholar 

  26. Suki WN, Zabaneh R, Cangiano JL, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72:1130–7.

    Article  CAS  PubMed  Google Scholar 

  27. Block GA, Spiegel DM, Ehrlich J, et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68:1815–24.

    Article  CAS  PubMed  Google Scholar 

  28. Di Iorio B, Molony D, Bell C, Cucciniello E, Bellizzi V, Russo D. Bellasi A; INDEPENDENT Study Investigators. Sevelamer versus calcium carbonate in incident hemodialysis patients: results of an open-label 24-month randomized clinical trial. Am J Kidney Dis. 2013;62(4):771–8.

    Article  PubMed  Google Scholar 

  29. Jamal SA, Vandermeer B, Raggi P, et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268–77.

    Article  CAS  PubMed  Google Scholar 

  30. Russo D, Miranda I, Ruocco C, et al. The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int. 2007;72:1255–61.

    Article  CAS  PubMed  Google Scholar 

  31. Di Iorio B, Bellasi A, Russo D, Investigators IS. Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol. 2012;7:487–93.

    Article  PubMed  Google Scholar 

  32. Block GA, Wheeler DC, Persky MS, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012;23:1407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hill KM, Martin BR, Wastney ME, et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int. 2013;83(5):959–66.

    Article  CAS  PubMed  Google Scholar 

  34. Isakova T, Gutiérrez OM, Chang Y, et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol. 2009;20:388–96.

    Article  CAS  PubMed Central  Google Scholar 

  35. Lopes AA, Tong L, Thumma J, et al. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS): Evaluation of Possible Confounding by Nutritional Status. Am J Kidney Dis. 2012;60:90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cannata-Andía JB, Fernández-Martín JL, Locatelli F, et al. Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney Int. 2013;84(5):998–1008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Ketteler MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ketteler, M. (2017). Phosphorus and Cardiovascular Disease. In: Gutiérrez, O., Kalantar-Zadeh, K., Mehrotra, R. (eds) Clinical Aspects of Natural and Added Phosphorus in Foods. Nutrition and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6566-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6566-3_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6564-9

  • Online ISBN: 978-1-4939-6566-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics