Skip to main content

Proteomic Studies of HIV-1 and Its Posttranslational Modifications

  • Chapter
  • First Online:
HIV-1 Proteomics

Abstract

HIV requires many proteins to complete its life cycle. Many of these proteins are decorated with biologically critical modifications that alter structure and function. In fact, there are many different types of posttranslational modifications (PTMs) involved in the virus life cycle (Fig. 6.1). In this chapter, we will reintroduce the virus life cycle from the perspective of PTMs. While these modifications will be described in detail later in the chapter, we will highlight new modifications in bold as they are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briggs JA, et al. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J. 2003;22(7):1707–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilhelm D, et al. Glycosylation assists binding of HIV protein gp120 to human CD4 receptor. Chembiochem. 2012;13(4):524–7.

    Article  CAS  PubMed  Google Scholar 

  3. Bhattacharya J, et al. Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles. J Virol. 2004;78(10):5500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilen CB, et al. Molecular mechanisms of HIV entry. Adv Exp Med Biol. 2012;726:223–42.

    Article  CAS  PubMed  Google Scholar 

  5. Geijtenbeek TB, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000;100(5):587–97.

    Article  CAS  PubMed  Google Scholar 

  6. Fassati A. Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Res. 2012;170(1–2):15–24.

    Article  CAS  PubMed  Google Scholar 

  7. Schweitzer CJ, et al. Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res. 2013;12(2):559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allouch A, Cereseto A. Identification of cellular factors binding to acetylated HIV-1 integrase. Amino Acids. 2011;41(5):1137–45.

    Article  CAS  PubMed  Google Scholar 

  9. Gallay P, et al. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell. 1995;83(4):569–76.

    Article  CAS  PubMed  Google Scholar 

  10. Francis AC, et al. Role of phosphorylation in the nuclear biology of HIV-1. Curr Med Chem. 2011;18(19):2904–12.

    Article  CAS  PubMed  Google Scholar 

  11. Cereseto A, et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 2005;24(17):3070–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Lint C, et al. Molecular mechanisms involved in HIV-1 transcriptional latency and reactivation: implications for the development of therapeutic strategies. Bull Mem Acad R Med Belg. 2004;159(Pt 2):176–89.

    PubMed  Google Scholar 

  13. Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008;31(4):449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Provitera P, et al. The effect of HIV-1 Gag myristoylation on membrane binding. Biophys Chem. 2006;119(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  15. Tang C, et al. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci U S A. 2004;101(2):517–22.

    Article  CAS  PubMed  Google Scholar 

  16. Morikawa Y, et al. Roles of matrix, p2, and N-terminal myristoylation in human immunodeficiency virus type 1 Gag assembly. J Virol. 2000;74(1):16–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saad JS, et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A. 2006;103(30):11364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen DH, Hildreth JE. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol. 2000;74(7):3264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murakami T. Roles of the interactions between Env and Gag proteins in the HIV-1 replication cycle. Microbiol Immunol. 2008;52(5):287–95.

    Article  CAS  PubMed  Google Scholar 

  20. Moulard M, et al. Processing and routage of HIV glycoproteins by furin to the cell surface. Virus Res. 1999;60(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  21. Checkley MA, et al. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol. 2011;410(4):582–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dussupt V, et al. Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J Virol. 2011;85(5):2304–15.

    Article  CAS  PubMed  Google Scholar 

  23. Usami Y, et al. The ESCRT pathway and HIV-1 budding. Biochem Soc Trans. 2009;37(Pt 1):181–4.

    Article  CAS  PubMed  Google Scholar 

  24. Sette P, et al. The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif. J Virol. 2010;84(16):8181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gurer C, et al. Covalent modification of human immunodeficiency virus type 1 p6 by SUMO-1. J Virol. 2005;79(2):910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med. 2012;2(7):a006924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pennisi E. Genomics. ENCODE project writes eulogy for junk DNA. Science. 2012;337(6099):1159, 1161.

    Article  CAS  PubMed  Google Scholar 

  28. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.

    Article  CAS  PubMed  Google Scholar 

  29. Wold F. In vivo chemical modification of proteins (post-translational modification). Annu Rev Biochem. 1981;50:783–814.

    Article  CAS  PubMed  Google Scholar 

  30. Khoury GA, et al. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:90.

    Article  CAS  PubMed Central  Google Scholar 

  31. Wang T, et al. HIV-1-infected astrocytes and the microglial proteome. J Neuroimmune Pharmacol. 2008;3(3):173–86.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang Z, et al. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A. 2008;105(37):13793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krebs EG, Fischer EH. Phosphorylase activity of skeletal muscle extracts. J Biol Chem. 1955;216(1):113–20.

    CAS  PubMed  Google Scholar 

  34. Manning G, et al. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002;27(10):514–20.

    Article  CAS  PubMed  Google Scholar 

  35. Barford D, et al. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 1998;27:133–64.

    Article  CAS  PubMed  Google Scholar 

  36. Stanley P, et al. N-Glycans. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  37. Varki A, Lowe JB. Biological roles of glycans. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  38. Thaysen-Andersen M, Packer NH. Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology. 2012;22(11):1440–52.

    Article  CAS  PubMed  Google Scholar 

  39. Sato S, et al. Glycans, galectins, and HIV-1 infection. Ann N Y Acad Sci. 2012;1253(1):133–48.

    Article  CAS  PubMed  Google Scholar 

  40. Wei X, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422(6929):307–12.

    Article  CAS  PubMed  Google Scholar 

  41. Dacheux L, et al. Evolutionary dynamics of the glycan shield of the human immunodeficiency virus envelope during natural infection and implications for exposure of the 2G12 epitope. J Virol. 2004;78(22):12625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang X, et al. Highly conserved HIV-1 gp120 glycans proximal to CD4-binding region affect viral infectivity and neutralizing antibody induction. Virology. 2012;423(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  43. Boutin JA. Myristoylation. Cell Signal. 1997;9(1):15–35.

    Article  CAS  PubMed  Google Scholar 

  44. van’t Hof W, Resh MD. Targeting proteins to plasma membrane and membrane microdomains by N-terminal myristoylation and palmitoylation. Methods Enzymol. 2000;327:317–30.

    Article  CAS  Google Scholar 

  45. Levental I, et al. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry. 2010;49(30):6305–16.

    Article  CAS  PubMed  Google Scholar 

  46. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev. 2005;85(4):1159–204.

    Article  CAS  PubMed  Google Scholar 

  47. Finley D, Chau V. Ubiquitination. Annu Rev Cell Biol. 1991;7:25–69.

    Article  CAS  PubMed  Google Scholar 

  48. Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol. 2000;11(3):141–8.

    Article  CAS  PubMed  Google Scholar 

  49. Biard-Piechaczyk M, et al. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell. 2012;104(3):165–87.

    Article  CAS  PubMed  Google Scholar 

  50. Li S, et al. Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010;8:337–47.

    Google Scholar 

  51. Macek B, et al. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol. 2009;49:199–221.

    Article  CAS  PubMed  Google Scholar 

  52. Hood L. Systems biology: integrating technology, biology, and computation. Mech Ageing Dev. 2003;124(1):9–16.

    Article  PubMed  Google Scholar 

  53. Campbell S, et al. Modulation of HIV-like particle assembly in vitro by inositol phosphates. Proc Natl Acad Sci U S A. 2001;98(19):10875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ono A, et al. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A. 2004;101(41):14889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mishra S, et al. O-GlcNAc modification: why so intimately associated with phosphorylation? Cell Commun Signal. 2011;9(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morita D, et al. Cutting edge: T cells monitor N-myristoylation of the Nef protein in simian immunodeficiency virus-infected monkeys. J Immunol. 2011;187(2):608–12.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang J, et al. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res. 2011;10(9):4054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Platt EJ, et al. Kinetic mechanism for HIV-1 neutralization by antibody 2G12 entails reversible glycan binding that slows cell entry. Proc Natl Acad Sci U S A. 2012;109(20):7829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saermark T, et al. Characterization of N-myristoyl transferase inhibitors and their effect on HIV release. AIDS. 1991;5(8):951–8.

    Article  CAS  PubMed  Google Scholar 

  60. Budhiraja S, et al. Cyclin T1 and CDK9 T-loop phosphorylation are downregulated during establishment of HIV-1 latency in primary resting memory CD4+ T cells. J Virol. 2013;87(2):1211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kanshin E, et al. Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol. 2012;23(8):843–53.

    Article  CAS  PubMed  Google Scholar 

  62. Colasanti M, et al. S-nitrosylation of viral proteins: molecular bases for antiviral effect of nitric oxide. IUBMB Life. 1999;48(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  63. Persichini T, et al. Cysteine nitrosylation inactivates the HIV-1 protease. Biochem Biophys Res Commun. 1998;250(3):575–6.

    Article  CAS  PubMed  Google Scholar 

  64. Jaffrey SR, et al. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 2001;3(2):193–7.

    Article  CAS  PubMed  Google Scholar 

  65. Santhanam L, et al. Selective fluorescent labeling of S-nitrosothiols (S-FLOS): a novel method for studying S-nitrosation. Nitric Oxide. 2008;19(3):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kohr MJ, et al. Measurement of s-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication. Circ Res. 2012;111(10):1308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murray CI, Van Eyk JE. A twist on quantification: measuring the site occupancy of s-nitrosylation. Circ Res. 2012;111(10):1253–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wells L, et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics. 2002;1(10):791–804.

    Article  CAS  PubMed  Google Scholar 

  69. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 1975;26(3):231–43.

    CAS  PubMed  Google Scholar 

  70. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007–21.

    PubMed  PubMed Central  Google Scholar 

  71. Unlu M, et al. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18(11):2071–7.

    Article  CAS  PubMed  Google Scholar 

  72. Kramer G, et al. Proteomic analysis of HIV-T cell interaction: an update. Front Microbiol. 2012;3:240.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Melendez LM, et al. Proteomic analysis of HIV-infected macrophages. J Neuroimmune Pharmacol. 2011;6(1):89–106.

    Article  PubMed  Google Scholar 

  74. Pocernich CB, et al. Proteomics analysis of human astrocytes expressing the HIV protein Tat. Brain Res Mol Brain Res. 2005;133(2):307–16.

    Article  CAS  PubMed  Google Scholar 

  75. Rozek W, et al. Cerebrospinal fluid proteomic profiling of HIV-1-infected patients with cognitive impairment. J Proteome Res. 2007;6(11):4189–99.

    Article  CAS  PubMed  Google Scholar 

  76. Davis AJ, et al. Human immunodeficiency virus type-1 reverse transcriptase exists as post-translationally modified forms in virions and cells. Retrovirology. 2008;5:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Graham DR, et al. Two-dimensional gel-based approaches for the assessment of N-Linked and O-GlcNAc glycosylation in human and simian immunodeficiency viruses. Proteomics. 2008;8(23–24):4919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fenn JB, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.

    Article  CAS  PubMed  Google Scholar 

  79. Tanaka K, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2(8):151–3.

    Article  CAS  Google Scholar 

  80. McCormack AL, et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem. 1997;69(4):767–76.

    Article  CAS  PubMed  Google Scholar 

  81. Coiras M, et al. Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression. Proteomics. 2006;6 Suppl 1:S63–73.

    Article  PubMed  Google Scholar 

  82. Zhang L, et al. Host proteome research in HIV infection. Genomics Proteomics Bioinformatics. 2010;8(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dillen L, et al. Comparison of triple quadrupole and high-resolution TOF-MS for quantification of peptides. Bioanalysis. 2012;4(5):565–79.

    Article  CAS  PubMed  Google Scholar 

  84. Olsen JV, et al. A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics. 2009;8(12):2759–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh C, et al. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res. 2012;11(9):4517–25.

    Article  CAS  PubMed  Google Scholar 

  86. Villen J, et al. Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics. 2008;8(21):4444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schroeder MJ, et al. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem. 2004;76(13):3590–8.

    Article  CAS  PubMed  Google Scholar 

  88. Stensballe A, et al. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun Mass Spectrom. 2000;14(19):1793–800.

    Article  CAS  PubMed  Google Scholar 

  89. Syka JE, et al. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101(26):9528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Coon JJ, et al. Electron transfer dissociation of peptide anions. J Am Soc Mass Spectrom. 2005;16(6):880–2.

    Article  CAS  PubMed  Google Scholar 

  91. Xie LQ, et al. Improved proteomic analysis pipeline for LC-ETD-MS/MS using charge enhancing methods. Mol Biosyst. 2012;8(10):2692–8.

    Article  CAS  PubMed  Google Scholar 

  92. Gillet LC, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(6):O111.016717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tran JC, et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature. 2011;480(7376):254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee JE, et al. A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. J Am Soc Mass Spectrom. 2009;20(12):2183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kolb HC, et al. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40(11):2004–21.

    Article  CAS  PubMed  Google Scholar 

  96. Kiick KL, et al. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A. 2002;99(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  97. Chang PV, et al. Copper-free click chemistry in living animals. Proc Natl Acad Sci U S A. 2010;107(5):1821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Almaraz RT, et al. Metabolic oligosaccharide engineering with N-Acyl functionalized ManNAc analogs: cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol Bioeng. 2012;109(4):992–1006.

    Article  CAS  PubMed  Google Scholar 

  99. Hart C, et al. Metabolic labeling and click chemistry detection of glycoprotein markers of mesenchymal stem cell differentiation. Methods Mol Biol. 2011;698:459–84.

    Article  CAS  PubMed  Google Scholar 

  100. Hang HC, et al. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. Acc Chem Res. 2011;44(9):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heal WP, et al. N-Myristoyl transferase-mediated protein labelling in vivo. Org Biomol Chem. 2008;6(13):2308–15.

    Article  CAS  PubMed  Google Scholar 

  102. Kramer G, et al. Identification and quantitation of newly synthesized proteins in Escherichia coli by enrichment of azidohomoalanine-labeled peptides with diagonal chromatography. Mol Cell Proteomics. 2009;8(7):1599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kramer G, et al. Proteome-wide alterations in Escherichia coli translation rates upon anaerobiosis. Mol Cell Proteomics. 2010;9(11):2508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li Y, et al. Removal of a single N-linked glycan in human immunodeficiency virus type 1 gp120 results in an enhanced ability to induce neutralizing antibody responses. J Virol. 2008;82(2):638–51.

    Article  CAS  PubMed  Google Scholar 

  105. Reitter JN, et al. A role for carbohydrates in immune evasion in AIDS. Nat Med. 1998;4(6):679–84.

    Article  CAS  PubMed  Google Scholar 

  106. Huskens D, et al. The role of N-glycosylation sites on the CXCR4 receptor for CXCL-12 binding and signaling and X4 HIV-1 viral infectivity. Virology. 2007;363(2):280–7.

    Article  CAS  PubMed  Google Scholar 

  107. Linde ME, et al. The conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. J Proteome Res. 2013;12(5):2045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Angel TE, et al. The cerebrospinal fluid proteome in HIV infection: change associated with disease severity. Clin Proteomics. 2012;9(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Berro R, et al. Identifying the membrane proteome of HIV-1 latently infected cells. J Biol Chem. 2007;282(11):8207–18.

    Article  CAS  PubMed  Google Scholar 

  110. Kadiu I, et al. HIV-1 transforms the monocyte plasma membrane proteome. Cell Immunol. 2009;258(1):44–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chertova E, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80(18):9039–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Alfaro JF, et al. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci U S A. 2012;109(19):7280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nagaraj N, et al. Correction to feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res. 2012;11(6):3506–8.

    Article  CAS  Google Scholar 

  114. Hanisch FG. O-glycoproteomics: site-specific O-glycoprotein analysis by CID/ETD electrospray ionization tandem mass spectrometry and top-down glycoprotein sequencing by in-source decay MALDI mass spectrometry. Methods Mol Biol. 2012;842:179–89.

    Article  CAS  PubMed  Google Scholar 

  115. Binley JM, et al. Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J Virol. 2010;84(11):5637–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gouveia R, et al. Expression of glycogenes in differentiating human NT2N neurons. Downregulation of fucosyltransferase 9 leads to decreased Lewis(x) levels and impaired neurite outgrowth. Biochim Biophys Acta. 2012;1820(12):2007–19.

    Article  CAS  PubMed  Google Scholar 

  117. Takahashi N. Demonstration of a new amidase acting on glycopeptides. Biochem Biophys Res Commun. 1977;76(4):1194–201.

    Article  CAS  PubMed  Google Scholar 

  118. Yang SJ, Zhang H. Glycan analysis by reversible reaction to hydrazide beads and mass spectrometry. Anal Chem. 2012;84(5):2232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nwosu CC, et al. Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J Proteome Res. 2012;11(5):2912–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Froehlich JW, et al. Nano-LC-MS/MS of glycopeptides produced by nonspecific proteolysis enables rapid and extensive site-specific glycosylation determination. Anal Chem. 2011;83(14):5541–7.

    Article  CAS  PubMed  Google Scholar 

  121. Hua S, et al. Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal Bioanal Chem. 2012;403(5):1291–302.

    Article  CAS  PubMed  Google Scholar 

  122. Krishnamoorthy L, et al. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol. 2009;5(4):244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang J, Caprioli RM. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem. 2011;83(14):5728–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bruand J, et al. Automated querying and identification of novel peptides using MALDI mass spectrometric imaging. J Proteome Res. 2011;10(4):1915–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goodwin RJ, et al. Protein and peptides in pictures: imaging with MALDI mass spectrometry. Proteomics. 2008;8(18):3785–800.

    Article  CAS  PubMed  Google Scholar 

  126. Seeley EH, Caprioli RM. 3D imaging by mass spectrometry: a new frontier. Anal Chem. 2012;84(5):2105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Robinson S, et al. Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption ionization mass spectrometry. New Phytol. 2007;173(2):438–44.

    Article  CAS  PubMed  Google Scholar 

  128. Ott M, et al. Tat acetylation: a regulatory switch between early and late phases in HIV transcription elongation. Novartis Found Symp. 2004;259:182–93; discussion 186–193, 185–223.

    Article  CAS  PubMed  Google Scholar 

  129. Raska M, et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem. 2010;285(27):20860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bentham M, et al. Role of myristoylation and N-terminal basic residues in membrane association of the human immunodeficiency virus type 1 Nef protein. J Gen Virol. 2006;87(Pt 3):563–71.

    Article  CAS  PubMed  Google Scholar 

  131. Rousso I, et al. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci U S A. 2000;97(25):13523–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Strack B, et al. A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A. 2000;97(24):13063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Colquhoun Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science + Business Media New York

About this chapter

Cite this chapter

Colquhoun, D.R., Graham, D.R.M. (2016). Proteomic Studies of HIV-1 and Its Posttranslational Modifications. In: Graham, D., Ott, D. (eds) HIV-1 Proteomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6542-7_6

Download citation

Publish with us

Policies and ethics