Skip to main content

Characterization of Microbial Inactivation by Microwave Heating

  • Chapter
  • First Online:
Book cover Global Food Security and Wellness

Abstract

Heating processes are paramount means for preventing food-borne illnesses. For conventional heating, time and temperature recommendations are given to improve food safety. These recommendations are based on two key-parameters: D- and z-values. With the aim of saving time and energy, microwave technologies are particularly interesting for cooking or decontaminating foods. However, the D- and z-values are not appropriate for such treatments because the heating temperature is not constant. New parameters based on the specific power are proposed to characterize this heating process (D p- and z p-values). In this chapter, microwave heating and its impacts on microorganisms are described. An outline on thermobacteriology in food processing is reported, followed by a presentation of the methodology used for determining the D p- and z p-values. Finally, the application of D p- and z p-values for sterilization, pasteurization, and cooking operations using microwave technology is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Can Company (1943) The canned food reference manual. American Can Company, New York, NY, 248p

    Google Scholar 

  • Anantheswaran R, Ramaswamy H (2001) Bacterial destruction and enzyme inactivation during microwave heating. In: Datta A, Anantheswaran R (eds) Handbook of Microwave technology for food applications. Marcel Dekker, New York, NY, pp 191–213

    Google Scholar 

  • ANSES (2011) Shigatoxin-producing strains of Escherichia coli. French Agency For Food Environmental And Occupational Health And Safety, Paris, p 1

    Google Scholar 

  • Ball CO, Olson FCW (1957) Sterilization in Food Technology: theory, practice, and calculations. McGraw-Hill Book Co, London, 654p

    Google Scholar 

  • Bates CJ, Spencer RC (1995) Survival of Salmonella species in eggs poached using a microwave oven. J Hosp Infect 29:121–127

    Article  CAS  Google Scholar 

  • Bigelow WD, Esty JR (1920) Thermal death point in relation to time of typical thermophilic organisms. J Infect Dis 27:602–617

    Article  Google Scholar 

  • Bimbenet J, Duquesnoy A, Trystram G (2002) Génie des procédés alimentaires: des bases aux applications. Technique et ingénierie. Dunod/RIA, Paris, 554 p

    Google Scholar 

  • Canumir JA, Celis JE, De Bruijn J, Vidal V (2002) Pasteurisation of apple juice by using microwaves. Lebensm Wiss Technol 35:389–392

    Article  CAS  Google Scholar 

  • Cerf O, Dousset X, Brossard J (1996) Pasteurisation et stérilisation thermique. In: Bourgeois CM, Mescle JF, Zucca J (eds) Microbiologie alimentaire; aspect microbiologique de la sécurité et de la qualité des aliments. Tec et Doc Lavoisier, Paris, pp 515–530

    Google Scholar 

  • Cheftel H, Thomas G (1963) Principes et méthodes pour l’établissement des barèmes de stérilisation des conserves alimentaires. Gauthier-Villars, Paris, 108 p

    Google Scholar 

  • Codex Alimentarius Commission (2003) Recommended international codex of practice general principles of food hygiene, including Annex on Hazard Analysis Critical Control Point (HACCP) system and guidelines for its applications. CAC/RCP 1 - 1969 Rev. 4-2003. pp 1–31

    Google Scholar 

  • Codex Alimentarius Commission (2004) Report of the Twentieth Session of the Codex Committee on General Principles, ALINORM 04/27/33A. Paris, France, pp 37–38

    Google Scholar 

  • Culkin KA, Daniel YC, Fung D (1975) Destruction of E. coli and S. typhimurium in microwave-cooked soups. J Milk Food Technol 38(1):8–15

    Article  Google Scholar 

  • DGAL (2007) La note d’information interministérielle relative aux recommandations concernant la cuisson des steaks hachés dans le cadre de la prévention des infections à E. coli O157:H7 pour les professionnels de la restauration collective, recommande une cuisson avec une température à coeur de 65 °C. In: Direction générale de l’Agriculture, editor. DGAL/SDSSA/O2007-8001 du 13 février 2007

    Google Scholar 

  • Fellows PJ (1992) Food processing technology: principles and practice. Ellis Horwood Limited, Chichester, 505p

    Google Scholar 

  • Gadonna-Widehem P, Marier D, Druon C, Gadonna J, Laguerre J (2012a) Détermination des paramètres de thermoresistance d’Enterococcus faecalis après cuissons classique et par micro-ondes: application à la restauration collective. In: Lavoisier (ed.) XIIIème congrès de la société française du génie des procédés. Des procédés au service du produit au coeur de l’Europe. Lille, France: 29 novembre-1décembre 2011 Récents Progrès en Génie des Procédés, p 101

    Google Scholar 

  • Gadonna-Widehem P, Marier D, Rame V, Laguerre J (2012b) Destruction parameters of Enterococcus faecalis for establishing the equivalence of pasteurization between classical and microwave heating. 16th World Congress of Food Science and Technology IUFOST. Fos do Iguaçu, Parana, Brazil, 5–9 August 2012

    Google Scholar 

  • Gardner GA, Patton J (1975) A note on the heat resistance of a Streptococcus faecalis isolated from a “soft core” in canned ham. Proc. 21st Europ. Meet. Meat Res. Workers. Bern, pp 52–54

    Google Scholar 

  • Göksoy EO, James C, Corry JEL (2000) The effect of short-time microwave exposures on inoculated pathogens on chicken and the shelf-life of uninoculated chicken meat. J Food Eng 45(3):153–160

    Article  Google Scholar 

  • Goldblith SA, Wang DIC (1967) Effect of microwaves on Escherichia coli and Bacillus subtilis. Appl Microbiol 15:1371–1375

    CAS  Google Scholar 

  • Hamrick PE, Butler BT (1973) Exposure of bacteria to 2450-MHz radiation on microorganisms. J Microwave Power 8:227–233

    Article  Google Scholar 

  • Hanna Wakim L (2008) Effet d’un chauffage micro-ondes et conventionnel sur la thermorésistance d’une Salmonelle traitée dans un produit à basse activité d’eau. Conséquences sur la qualité du produit. PhD Thesis. ABIES Massy, AgroParisTech, France, 172 p

    Google Scholar 

  • Hermier J, Cerf O (1991) Thermobactériologie. In: Larousse J (ed) La conserve appertisée: aspects scientifiques, techniques et économiques. Paris Lavoisier Tec & Doc, pp 183–206

    Google Scholar 

  • Joffin C, Joffin J-N (2010) Microbiologie alimentaire. In: Figarella J, Guillet F (eds) Collection biologie technique, 6th edn. CRDP aquitaine, Bordeaux, 344 p

    Google Scholar 

  • Jouquand C, Tessier FJ, Bernard J, Marier D, Woodward K, Jacolot P, Gadonna-Widehem P, Laguerre J-C (2015) Optimization of microwave cooking of beef burgundy in terms of nutritional and organoleptic properties. LWT- Food Sci Technol 60(1):271–276

    Article  CAS  Google Scholar 

  • Knutson KM, Marth EH, Wagner MK (1988) Use of microwave ovens to pasteurize milk. J Food Prot 51(9):715–719

    Article  Google Scholar 

  • Lado BH, Yousef AE (2002) Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infect 4(8):433–440

    Article  Google Scholar 

  • Laguerre J-C, Gadonna-Widehem P, Marier D, Onillon E, Ait-Ameur L, Birlouez-Aragon I (2011) The impact of microwave heating of infant formula model on neo-formed contaminant formation, nutrient degradation and spore destruction. J Food Eng 107(2):208–213

    Article  CAS  Google Scholar 

  • Lechowich RV, Beuchat LR, Fox KI, Webster FH (1969) Procedure for evaluating the effects of 2,450-megahertz microwaves upon Streptococcus faecalis and Saccharomyces cerevisiae. Appl Microbiol 17(1):106–110

    CAS  Google Scholar 

  • Mackey BM, Bratchell N (1989) The heat resistance of Listeria monocytogenes. Lett Appl Microbiol 9:89–94

    Article  Google Scholar 

  • Mafart P (1991) Génie industriel alimentaire. Tome I: les procédés physiques de conservation. Lavoisier Tec & Doc, Paris, 295p

    Google Scholar 

  • Magnus CA, McCurdy AR, Ingledew WM (1986) Evaluation of four media for recovery of heat-stressed streptococci. J Food Prot 51:895–897

    Article  Google Scholar 

  • Martin J-L (1984) Conduite des cuissons à l’aide des valeurs pasteurisatrice et cuisatrice. Viandes et Produits Carnés 5:204–207

    Google Scholar 

  • McAuley CM, Gobius KS, Britz ML, Craven HM (2012) Heat resistance of thermoduric enterococci isolated from milk. Int J Food Microbiol 154(3):162–168

    Article  CAS  Google Scholar 

  • Meda V, Raghavan V (2005) Microwave heating and the dielectric properties of foods. In: Shubert H, Regier M (eds) The microwave processing of foods. Woodhead Publishing Limited, Cambridge, pp 61–75

    Chapter  Google Scholar 

  • Ministry of Agriculture (1974) Réglementation des conditions d’hygiène relatives à la préparation, la conservation, la distribution et la vente des plats cuisinés à l’avance. JO du 16 juillet 1974, pp 7397–7399

    Google Scholar 

  • Ministry of Agriculture (1988) Prolongation de la durée de vie des plats cuisinés à l’avance, modification du protocole permettant d’obtenir les autorisations. Note de Service DGAL/SVHA/N88/8106 du 31 Mai 1988

    Google Scholar 

  • Moats WA (1971) Kinetics of thermal death of bacteria. J Bacteriol 105(1):165–171

    CAS  Google Scholar 

  • Mossel DAA, Thomas G (1988) Microbiological safety of refrigerated meals: recommendations for risk analysis, design and monitoring of processing. Microbiol Aliment Nutr 6:289

    Google Scholar 

  • Mullin J (1999) Microwave processing. In: Gould G (ed) New methods of food preservation. Aspen Publisher, Inc., Frederick, MD, pp 112–134

    Google Scholar 

  • NACMCF (2006) Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J Food Prot 69(5):1190–1216

    Article  Google Scholar 

  • Najdovski L, Dragas AZ, Kotnik V (1991) The killing activity of microwaves on some non-sporogenic and sporogenic medically important bacterial strains. J Hosp Infect 19:239–247

    Article  CAS  Google Scholar 

  • Olsen CM (1965) Microwave inhibit bread molds. J Food Eng 37(7):51–53

    Google Scholar 

  • Ott TM, El-Bisi HM, Esselen WB (1961) Thermal destruction of Streptococcus faecalis in prepared frozen foods. J Food Sci 26(2):1–10

    Article  Google Scholar 

  • Pittia P, Furlanetto R, Maifreni M, Tassan Mangina F, Dalla Rosa M (2008) Safe cooking optimisation by F-value computation in a semi-automatic oven. Food Control 19:688–697

    Article  Google Scholar 

  • Rahn O (1929) The size of bacteria as the cause of the logarithmic order of death. J Gen Physiol 13(2):179–205

    Article  CAS  Google Scholar 

  • Rahn O (1945) Physical methods of sterilization of microorganisms. Bacteriol Rev 9(1):1–47

    CAS  Google Scholar 

  • Regulation EC 852/2004 of the European Parliament and of the Council of 29 April 2004 on the hygiene of foodstuffs. Off J Eur Union 139 (30.04.2004), 1–54

    Google Scholar 

  • Reichart O (1979) A new experimental method for the determination of the heat destruction parameters of microorganism. Acta Aliment 8:131–155

    Google Scholar 

  • Risman P (1996) Guest editorial. J Microwave Power Electromag Energ 31(2):69–70

    Article  Google Scholar 

  • Riva M, Lucisano M, Galli M, Armatori A (1991) Comparative microbial lethality and thermal damage during microwave and conventional heating in mussels. Ann Microbiol 41(2):147–160

    Google Scholar 

  • Rosset R, Poumeyrol G (1986) Modern processes for the preparation of ready to eat meals by cooking before or after sous vide packaging. Sci Aliment 6:161–167

    Google Scholar 

  • Sanz Pérez B, López Lorenzo P, García ML, Hernández PE, Ordoñez JA (1982) Heat resistance of enterococci. Milchwissenschaft 37:724–726

    Google Scholar 

  • Schubert H, Regier M (2005) The microwave processing of foods. Taylor & Francis Group, Boca Raton, FL, 345 p

    Book  Google Scholar 

  • Sörqvist S (2003) Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Vet Scand 44(1-2):1–19

    Article  Google Scholar 

  • Stewart CM, Tompkin RB, Cole MB (2002) Food safety: new concepts for the new millennium. Innov Food Sci Emerg Technol 3(2):105–112

    Article  Google Scholar 

  • Stumbo CR (2006) Thermobacteriology in food processing. Academic, New York, NY, 329 p

    Google Scholar 

  • Tajchakavit S, Ramaswamy HS (1997) Thermal vs microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. Lebensm Wiss Technol 30:85–93

    Article  CAS  Google Scholar 

  • Tajchakavit S, Ramaswamy HS, Fustier P (1998) Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating. Food Res Int 31(10):713–722

    Article  Google Scholar 

  • Tang J (2005) Dielectric properties of food. In: Schubert H, Regier M (eds) Microwave processing of food. CRC Press Woodhead Publishing Limited, Cambridge, pp 22–40

    Chapter  Google Scholar 

  • Tessier FJ, Gadonna-Widehem P, Laguerre JC (2006) The fluorimetric FAST method, a simple tool for the optimization of microwave pasteurization of milk. Mol Nutr Food Res 50(9):793–798

    Article  CAS  Google Scholar 

  • Tong CH (1996) Effect of microwaves on biological and chemical systems. Microwave World 17(4):14–23

    Google Scholar 

  • Venkatesh M, Raghavan G (2004) An overview of microwave processing and dielectric properties of agri-food materials. Can Biosyst Eng 47(7):15–30

    Google Scholar 

  • Welt BA, Tong CH, Rossen JL, Lund DB (1994) Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3670) spores. Appl Environ Microbiol 60:482–488

    CAS  Google Scholar 

  • Woo IS, Rhee IK, Park HD (2000) Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl Environ Microbiol 66:2243–2247

    Article  CAS  Google Scholar 

  • Zhang H, Datta A (2001) Electromagnetics of microwave heating: magnitude and uniformity of energy absorption in an oven. In: Datta A, Ramaswamy C (eds) Handbook of microwave technology for food applications. Marcel Dekker, Inc., New York, NY, pp 33–67

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cynthia Helou, Gerard Graham, Cyril Druon, Céline Mauhin, David Marier, and Véronique Rame of the Institute LaSalle Beauvais for their kind assistance. Part of this work was supported by the European project HOTPOT—A partnership project between Lasalle Beauvais and the University of Brighton selected under the European Cross-border Cooperation Program INTERREG IV A France (Channel)—England, cofunded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Gadonna-Widehem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gadonna-Widehem, P., Laguerre, JC. (2017). Characterization of Microbial Inactivation by Microwave Heating. In: Barbosa-Cánovas, G., et al. Global Food Security and Wellness. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6496-3_23

Download citation

Publish with us

Policies and ethics