Skip to main content

Diversity in Neoplasms

  • Chapter
  • First Online:
Frontiers in Cancer Research
  • 537 Accesses

Abstract

The evolutionary forces of mutation and natural selection that are central to cancer development generate heterogeneity within the population of somatic cells that make up a neoplasm. This intra-tumoral heterogeneity can be measured through a variety of means, including cytogenetic analyses to examine chromosomal duplications, losses, and rearrangements; genetic mutations; and epigenetic changes. Studies have established that measures of heterogeneity can have prognostic significance. While heterogeneity is an important property of tumor progression and therapeutic resistance, basic questions about the level of intra-tumoral heterogeneity, the mechanism by which it is established, the dynamics of heterogeneity over time, the optimal method for its measurement, and how these heterogeneity measurements and indices can best be used as universal biomarkers to improve patient care remain unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313. doi:10.1038/nature10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merlo LMF, Sadowsky MJ, Ferguson JA, Dean AM (2006) The argRB of Escherichia coli is rare in isolates obtained from natural sources. Gene 376:240–247. doi:10.1016/j.gene.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  3. Levins R, Lewontin R (1985) The dialectical biologist. Harvard University Press, Cambridge

    Google Scholar 

  4. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563. doi:10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  5. Moinfar F, Man YG, Arnould L et al (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566

    CAS  PubMed  Google Scholar 

  6. Shiraishi H, Mikami T, Yoshida T et al (2006) Early genetic instability of both epithelial and stromal cells in esophageal squamous cell carcinomas, contrasted with Barrett’s adenocarcinomas. J Gastroenterol 41:1186–1196. doi:10.1007/s00535-006-1953-4

    Article  CAS  PubMed  Google Scholar 

  7. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252. doi:10.1038/nrc2618

    Article  CAS  PubMed  Google Scholar 

  8. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401. doi:10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  9. Wunderlich V (2007) Early references to the mutational origin of cancer. Int J Epidemiol 36:246–247. doi:10.1093/ije/dyl272

    Article  PubMed  Google Scholar 

  10. De Grouchy J, de Nava C (1968) A chromosomal theory of carcinogenesis. Ann Intern Med 69:381–391

    Article  PubMed  Google Scholar 

  11. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  12. Heppner G, Miller B, Cooper DN, Miller FR (1980) Growth interactions between mammary tumor cells. In: McGrath C, Brennan M, Rich M (eds) Cell biology of breast cancer. Acadmic Press, New York, pp 161–172

    Google Scholar 

  13. Miller BE, Miller FR, Heppner GH (1989) Therapeutic perturbation of the tumor ecosystem in reconstructed heterogeneous mouse mammary tumors. Cancer Res 49:3747–3753

    CAS  PubMed  Google Scholar 

  14. Miller BE, Miller FR, Leith J, Heppner GH (1980) Growth interaction in vivo between tumor subpopulations derived from a single mouse mammary tumor. Cancer Res 40:3977–3981

    CAS  PubMed  Google Scholar 

  15. Albertini RJ, Nicklas JA, O’Neill JP, Robison SH (1990) In vivo somatic mutations in humans: measurement and analysis. Annu Rev Genet 24:305–326. doi:10.1146/annurev.ge.24.120190.001513

    Article  CAS  PubMed  Google Scholar 

  16. Araten DJ, Golde DW, Zhang RH et al (2005) A quantitative measurement of the human somatic mutation rate. Cancer Res 65:8111–8117. doi:10.1158/0008-5472.CAN-04-1198

    Article  CAS  PubMed  Google Scholar 

  17. Bielas JH, Loeb KR, Rubin BP et al (2006) Human cancers express a mutator phenotype. Proc Natl Acad Sci U S A 103:18238–18242. doi:10.1073/pnas.0607057103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bielas JH, Loeb LA (2005) Quantification of random genomic mutations. Nat Methods 2:285–290. doi:10.1038/nmeth751

    Article  CAS  PubMed  Google Scholar 

  19. Bigbee WL, Fuscoe JC, Grant SG et al (1998) Human in vivo somatic mutation measured at two loci: individuals with stably elevated background erythrocyte glycophorin A (gpa) variant frequencies exhibit normal T-lymphocyte hprt mutant frequencies. Mutat Res 397:119–136

    Article  CAS  PubMed  Google Scholar 

  20. Chao DL, Maley CC, Wu X et al (2006) Mutagen sensitivity and neoplastic progression in patients with Barrett’s esophagus: a prospective analysis. Cancer Epidemiol Biomarkers Prev 15:1935–1940. doi:10.1158/1055-9965.EPI-06-0492

    Article  CAS  PubMed  Google Scholar 

  21. Fujii H, Marsh C, Cairns P et al (1996) Genetic divergence in the clonal evolution of breast cancer. Cancer Res 56:1493–1497

    CAS  PubMed  Google Scholar 

  22. Gorunova L, Höglund M, Andrén-Sandberg A et al (1998) Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 23:81–99

    Article  CAS  PubMed  Google Scholar 

  23. Heim S, Teixeira MR, Dietrich CU, Pandis N (1997) Cytogenetic polyclonality in tumors of the breast. Cancer Genet Cytogenet 95:16–19

    Article  CAS  PubMed  Google Scholar 

  24. Sniegowski PD, Gerrish PJ (2010) Beneficial mutations and the dynamics of adaptation in asexual populations. Philos Trans R Soc Lond B Biol Sci 365:1255–1263. doi:10.1098/rstb.2009.0290

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sniegowski PD, Gerrish PJ, Johnson T, Shaver A (2000) The evolution of mutation rates: separating causes from consequences. Bioessays 22:1057–1066. doi:10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  26. Gerrish PJ, Colato A, Sniegowski PD (2013) Genomic mutation rates that neutralize adaptive evolution and natural selection. J R Soc Interface 10:20130329. doi:10.1098/rsif.2013.0329

    Article  PubMed  PubMed Central  Google Scholar 

  27. Salk JJ, Fox EJ, Loeb LA (2010) Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol 5:51–75. doi:10.1146/annurev-pathol-121808-102113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705. doi:10.1038/42701

    Article  CAS  PubMed  Google Scholar 

  29. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  31. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    CAS  PubMed  Google Scholar 

  32. Calabrese P, Shibata D (2010) A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates. BMC Cancer 10:3. doi:10.1186/1471-2407-10-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jackson AL, Loeb LA (1998) The mutation rate and cancer. Genetics 148:1483–1490

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fox EJ, Beckman RA, Loeb LA (2010) Reply: is there any genetic instability in human cancer? DNA Repair (Amst) 9:859–860. doi:10.1016/j.dnarep.2010.05.006

    Article  CAS  Google Scholar 

  35. Shibata D, Lieber MR (2010) Is there any genetic instability in human cancer? DNA Repair 9:858. doi:10.1016/j.dnarep.2010.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334. doi:10.1038/nrc3261

    Article  CAS  PubMed  Google Scholar 

  37. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  38. Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 331:1553–1558. doi:10.1126/science.1204040

    Article  CAS  PubMed  Google Scholar 

  39. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113. doi:10.1126/science.1145720

    Article  CAS  PubMed  Google Scholar 

  40. Heng HHQ, Bremer SW, Stevens JB et al (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220:538–547. doi:10.1002/jcp.21799

    Article  CAS  PubMed  Google Scholar 

  41. Stegmeier F, Warmuth M, Sellers WR, Dorsch M (2010) Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin Pharmacol Ther 87:543–552. doi:10.1038/clpt.2009.297

    Article  CAS  PubMed  Google Scholar 

  42. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  43. Smith G, Carey FA, Beattie J et al (2002) Mutations in APC, Kirsten-ras, and p53--alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A 99:9433–9438. doi:10.1073/pnas.122612899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sprouffske K, Pepper JW, Maley CC (2011) Accurate reconstruction of the temporal order of mutations in neoplastic progression. Cancer Prev Res (Phila) 4:1135–1144. doi:10.1158/1940-6207.CAPR-10-0374

    Article  Google Scholar 

  45. Reid BJ, Li X, Galipeau PC, Vaughan TL (2010) Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer 10:87–101. doi:10.1038/nrc2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haggitt RC (1994) Barrett’s esophagus, dysplasia, and adenocarcinoma. Hum Pathol 25:982–993

    Article  CAS  PubMed  Google Scholar 

  47. Maley CC, Galipeau PC, Li X et al (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 64:3414–3427. doi:10.1158/0008-5472.CAN-03-3249

    Article  CAS  PubMed  Google Scholar 

  48. Maley CC, Galipeau PC, Finley JC et al (2006) Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38:468–473. doi:10.1038/ng1768

    Article  CAS  PubMed  Google Scholar 

  49. Merlo LMF, Shah NA, Li X et al (2010) A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev Res (Phila) 3:1388–1397. doi:10.1158/1940-6207.CAPR-10-0108

    Article  Google Scholar 

  50. Tsao JL, Tavaré S, Salovaara R et al (1999) Colorectal adenoma and cancer divergence. Evidence of multilineage progression. Am J Pathol 154:1815–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siegmund KD, Marjoram P, Tavaré S, Shibata D (2009) Many colorectal cancers are “flat” clonal expansions. Cell Cycle 8:2187–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siegmund KD, Marjoram P, Woo Y-J et al (2009) Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc Natl Acad Sci U S A 106:4828–4833. doi:10.1073/pnas.0810276106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892. doi:10.1056/NEJMoa1113205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frumkin D, Wasserstrom A, Itzkovitz S et al (2008) Cell lineage analysis of a mouse tumor. Cancer Res 68:5924–5931. doi:10.1158/0008-5472.CAN-07-6216

    Article  CAS  PubMed  Google Scholar 

  55. Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Potter NE, Ermini L, Papaemmanuil E et al (2013) Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res 23:2115–2125. doi:10.1101/gr.159913.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mroz EA, Rocco JW (2013) MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol 49:211–215. doi:10.1016/j.oraloncology.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  58. Mroz EA, Tward AD, Pickering CR et al (2013) High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 119:3034–3042. doi:10.1002/cncr.28150

    Article  PubMed  PubMed Central  Google Scholar 

  59. Taniguchi K, Okami J, Kodama K et al (2008) Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci 99:929–935. doi:10.1111/j.1349-7006.2008.00782.x

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L, Znoyko I, Costa LJ et al (2011) Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia. Cancer Genet 204:654–665. doi:10.1016/j.cancergen.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  61. Hou Y, Song L, Zhu P et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885. doi:10.1016/j.cell.2012.02.028

    Article  CAS  PubMed  Google Scholar 

  62. Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895. doi:10.1016/j.cell.2012.02.025

    Article  CAS  PubMed  Google Scholar 

  63. Calabrese P, Tavaré S, Shibata D (2004) Pretumor progression: clonal evolution of human stem cell populations. Am J Pathol 164:1337–1346

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yatabe Y, Tavaré S, Shibata D (2001) Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci U S A 98:10839–10844. doi:10.1073/pnas.191225998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273. doi:10.1016/j.ccr.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  66. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6:2332–2338

    Article  CAS  PubMed  Google Scholar 

  67. Merlo LMF, Maley CC (2010) The role of genetic diversity in cancer. J Clin Invest 120:401–403. doi:10.1172/JCI42088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768. doi:10.1038/nrc2499

    Article  CAS  PubMed  Google Scholar 

  69. Anderson K, Lutz C, van Delft FW et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361. doi:10.1038/nature09650

    Article  CAS  PubMed  Google Scholar 

  70. Notta F, Mullighan CG, Wang JCY et al (2011) Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469:362–367. doi:10.1038/nature09733

    Article  CAS  PubMed  Google Scholar 

  71. Park SY, Gönen M, Kim HJ et al (2010) Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest 120:636–644. doi:10.1172/JCI40724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klein CA, Blankenstein TJF, Schmidt-Kittler O et al (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360:683–689. doi:10.1016/S0140-6736(02)09838-0

    Article  CAS  PubMed  Google Scholar 

  73. Stoecklein NH, Klein CA (2010) Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126:589–598. doi:10.1002/ijc.24916

    Article  CAS  PubMed  Google Scholar 

  74. Landau DA, Carter SL, Stojanov P et al (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152:714–726. doi:10.1016/j.cell.2013.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Almendro V, Marusyk A, Polyak K (2013) Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol 8:277–302. doi:10.1146/annurev-pathol-020712-163923

    Article  CAS  PubMed  Google Scholar 

  76. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  77. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648. doi:10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  78. Chen J, Li Y, Yu T-S et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. doi:10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Driessens G, Beck B, Caauwe A et al (2012) Defining the mode of tumour growth by clonal analysis. Nature 488:527–530

    Article  CAS  PubMed  Google Scholar 

  80. Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735. doi:10.1126/science.1224676

    Article  CAS  PubMed  Google Scholar 

  81. Bonavia R, Inda M-M, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71:4055–4060. doi:10.1158/0008-5472.CAN-11-0153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Parkin B, Ouillette P, Li Y et al (2013) Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood 121:369–377. doi:10.1182/blood-2012-04-427039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang X, Ouyang H, Yamamoto Y et al (2011) Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 145:1023–1035. doi:10.1016/j.cell.2011.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Franklin WA, Gazdar AF, Haney J et al (1997) Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest 100:2133–2137. doi:10.1172/JCI119748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Galipeau PC, Prevo LJ, Sanchez CA et al (1999) Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst 91:2087–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935. doi:10.1038/nrc2013

    Article  CAS  PubMed  Google Scholar 

  87. Crawford JM (2008) The origins of bladder cancer. Lab Invest 88:686–693. doi:10.1038/labinvest.2008.48

    Article  CAS  PubMed  Google Scholar 

  88. Corless CL, Spellman PT (2012) Tackling formalin-fixed, paraffin-embedded tumor tissue with next-generation sequencing. Cancer Discov 2:23–24. doi:10.1158/2159-8290.CD-11-0319

    Article  CAS  PubMed  Google Scholar 

  89. Kerick M, Isau M, Timmermann B et al (2011) Targeted high throughput sequencing in clinical cancer Settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics 4:68. doi:10.1186/1755-8794-4-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wagle N, Berger MF, Davis MJ et al (2012) High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov 2:82–93. doi:10.1158/2159-8290.CD-11-0184

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren M. F. Merlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag New York

About this chapter

Cite this chapter

Merlo, L.M.F. (2016). Diversity in Neoplasms. In: Maley, C., Greaves, M. (eds) Frontiers in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6460-4_4

Download citation

Publish with us

Policies and ethics