Skip to main content

Devices to Treat Hypertension in Chronic Kidney Disease

  • Chapter
  • First Online:
Core Concepts in Hypertension in Kidney Disease
  • 833 Accesses

Abstract

Hypertension is common in chronic kidney disease (CKD), and can be a cause or consequence of CKD. The prevalence of resistant hypertension is reported to be as high as 23 % in CKD, and prevalence increases as the estimated glomerular filtration rate (eGFR) declines. Suboptimal control rates of hypertension and limited advances in pharmacologic options have increased interest in the use of device therapy as potential complementary or alternative treatment modalities for hypertension. However, before routine use of these devices can be recommended for hypertension management, better understanding is needed regarding the safety, efficacy, and durability of their effects. This is especially true in CKD patients, as all large clinical trials studying device therapy have excluded patients with moderate-to-severe CKD and end-stage renal disease on dialysis. Additionally, studies do not show a universal blood pressure-lowering response with device therapy—patient subgroups that are more likely to respond need to be identified, and practical clinical markers that can assess adequacy of the intervention are needed. It should also be noted that none of the device therapies are currently approved for clinical use in the USA. Appropriate evaluation of patients with resistant hypertension, with emphasis on lifestyle modifications and appropriate antihypertensive medication use remains the cornerstone of management of these patients. Close collaboration between internists, interventionalists, and hypertension specialists is essential in the clinical and research arena of resistant hypertension, particularly when designing future research studies with device therapies, and determining their place in the treatment of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao MV, Qiu Y, Wang C, Bakris G. Hypertension and CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES), 1999–2004. Am J Kidney Dis. 2008;51(4 Suppl 2):S30–7.

    Article  PubMed  Google Scholar 

  2. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM, Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    Google Scholar 

  3. De Nicola L, Gabbai FB, Agarwal R, Chiodini P, Borrelli S, Bellizzi V, Nappi F, Conte G, Minutolo R. Prevalence and prognostic role of resistant hypertension in chronic kidney disease patients. J Am Coll Cardiol. 2013;61(24):2461–7.

    Article  PubMed  Google Scholar 

  4. Bangalore S, Fayyad R, Laskey R, Demicco DA, Deedwania P, Kostis JB, Messerli FH, Treating to New Targets Steering Committee and Investigators. Prevalence, predictors, and outcomes in treatment-resistant hypertension in patients with coronary disease. Am J Med. 2014;127(1):71–81.

    Google Scholar 

  5. Muntner P, Davis BR, Cushman WC, Bangalore S, Calhoun DA, Pressel SL, Black HR, Kostis JB, Probstfield JL, Whelton PK, Rahman M, ALLHAT Collaborative Research Group. Treatment-resistant hypertension and the incidence of cardiovascular disease and end-stage renal disease: results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension. 2014;64(5):1012–21.

    Google Scholar 

  6. Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC Jr, Crowley K, Goto S, Ohman EM, Bakris GL, Perlstein TS, Kinlay S, Bhatt DL, REACH Registry Investigators. Resistant hypertension: a frequent and ominous finding among hypertensive patients with atherothrombosis. Eur Heart J. 2013;34(16):1204–14.

    Google Scholar 

  7. Tanner RM, Calhoun DA, Bell EK, Bowling CB, Gutiérrez OM, Irvin MR, Lackland DT, Oparil S, Warnock D, Muntner P. Prevalence of apparent treatment-resistant hypertension among individuals with CKD. Clin J Am Soc Nephrol. 2013;8(9):1583–90.

    Article  PubMed  PubMed Central  Google Scholar 

  8. United States Renal Data System, 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. http://www.usrds.org/2014/view/v1_01.aspx. (2014) Accessed 28 May 2015.

  9. Schlaich MP, Sobotka PA, Krum H, Whitbourn R, Walton A, Esler MD. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension. 2009;54:1195–201.

    Article  CAS  PubMed  Google Scholar 

  10. Zanchetti AS. Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation. 1977;56:691–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kon V. Neural control of renal circulation. Miner Elecrolyte Metab. 1989;15:33–43.

    CAS  Google Scholar 

  12. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197. Review.

    CAS  PubMed  Google Scholar 

  13. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34:724–8.

    Article  CAS  PubMed  Google Scholar 

  14. Campese VM. Neurogenic factors and hypertension in renal disease. Kidney Int. 2000;57:S2–6.

    Article  Google Scholar 

  15. Katholi RE. Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am J Physiol. 1983;245:F1–14.

    CAS  PubMed  Google Scholar 

  16. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152:1501–4.

    Article  CAS  PubMed  Google Scholar 

  17. Krum H, Schlaich M, Sobotka P, Scheffers I, Kroon AA, de Leeuw PW. Novel procedure- and device-based strategies in the management of systemic hypertension. Eur Heart J. 2011;32(5):537–44.

    Article  PubMed  Google Scholar 

  18. Judd EK, Oparil S. Novel strategies for treatment of resistant hypertension. Kidney Int Suppl (2011). 2013;3(4):357–63.

    Google Scholar 

  19. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    Article  PubMed  Google Scholar 

  20. Symplicity HTN-2 Investigators, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9. doi:10.1016/S0140-6736(10)62039-9. Epub 2010 Nov 17.

  21. Kandzari DE, Bhatt DL, Sobotka PA, O'Neill WW, Esler M, Flack JM, Katzen BT, Leon MB, Massaro JM, Negoita M, Oparil S, Rocha-Singh K, Straley C, Townsend RR, Bakris G. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol. 2012;35(9):528–35.

    Article  PubMed  Google Scholar 

  22. Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat. 2012;25(5):628–33.

    Article  PubMed  Google Scholar 

  23. Templin C, Jaguszewski M, Ghadri JR, Sudano I, Gaehwiler R, Hellermann JP, Schoenenberger-Berzins R, Landmesser U, Erne P, Noll G, Lüscher TF. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the simplicity catheter system and the EnligHTN multi-electrode renal denervation catheter. Eur Heart J. 2013;34(28):2141–8, 2148b.

    Google Scholar 

  24. Myat A, Redwood SR, Qureshi AC, Thackray S, Cleland JG, Bhatt DL, Williams B, Gersh BJ. Renal sympathetic denervation therapy for resistant hypertension: a contemporary synopsis and future implications. Circ Cardiovasc Interv. 2013;6(2):184–97.

    Article  PubMed  Google Scholar 

  25. Rippy MK, Zarins D, Barman NC, Wu A, Duncan KL, Zarins CK. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol. 2011;100(12):1095–101.

    Article  PubMed  Google Scholar 

  26. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64.

    Article  CAS  PubMed  Google Scholar 

  27. Vink EE, Verloop WL, Siddiqi L, van Schelven LJ, Liam Oey P, Blankestijn PJ. The effect of percutaneous renal denervation on muscle sympathetic nerve activity in hypertensive patients. Int J Cardiol. 2014;176(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  28. Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):622–9.

    Article  PubMed  Google Scholar 

  29. Esler MD, Böhm M, Sievert H, Rump CL, Schmieder RE, Krum H, Mahfoud F, Schlaich MP. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9.

    Article  PubMed  Google Scholar 

  30. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Google Scholar 

  31. Bakris GL, Townsend RR, Flack JM, Brar S, Cohen SA, D’Agostino R, Kandzari DE, Katzen BT, Leon MB, Mauri L, Negoita M, O'Neill WW, Oparil S, Rocha-Singh K, Bhatt DL, SYMPLICITY HTN-3 Investigators. 12-month blood pressure results of catheter-based renal artery denervation for resistant hypertension: the SYMPLICITY HTN-3 trial. J Am Coll Cardiol. 2015;65(13):1314–21.

    Google Scholar 

  32. Persu A, Jin Y, Fadl Elmula FE, Jacobs L, Renkin J, Kjeldsen S. Renal denervation after symplicity HTN-3: an update. Curr Hypertens Rep. 2014;16(8):460.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pathak A, Ewen S, Fajadet J, Honton B, Mahfoud F, Marco J, Schlaich M, Schmieder R, Tsioufis K, Ukena C, Zeller T. From SYMPLICITY HTN-3 to the renal denervation global registry: where do we stand and where should we go? EuroIntervention. 2014;10(1):21–3.

    Article  PubMed  Google Scholar 

  34. Joyner MJ. Renal denervation: what next? Hypertension. 2014;64(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  35. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, Flack JM, Katzen BT, Lea J, Lee DP, Leon MB, Ma A, Massaro J, Mauri L, Oparil S, O'Neill WW, Patel MR, Rocha-Singh K, Sobotka PA, Svetkey L, Townsend RR, Bakris GL. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36(4):219–27.

    Article  PubMed  Google Scholar 

  36. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Böhm M. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419–24.

    Article  CAS  PubMed  Google Scholar 

  37. Ott C, Janka R, Schmid A, Titze S, Ditting T, Sobotka PA, Veelken R, Uder M, Schmieder RE. Vascular and renal hemodynamic changes after renal denervation. Clin J Am Soc Nephrol. 2013;8(7):1195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Physiol. 1980;238(5):R353–8.

    CAS  PubMed  Google Scholar 

  39. Nomura G, Kurosaki M, Takabatake T, Kibe Y, Takeuchi J. Reinnervation and renin release after unilateral renal denervation in the dog. J Appl Physiol. 1972;33(5):649–55.

    CAS  PubMed  Google Scholar 

  40. DiBona GF. Renal innervation and denervation: lessons from renal transplantation reconsidered. Artif Organs. 1987;11:457–62.

    Article  CAS  PubMed  Google Scholar 

  41. Hansen JM, Abildgaard U, Fogh-Andersen N, Kanstrup IL, Bratholm P, Plum I, Strandgaard S. The transplanted human kidney does not achieve functional reinnervation. Clin Sci (Lond). 1994;87(1):13–20.

    Article  CAS  Google Scholar 

  42. Geisler BP, Egan BM, Cohen JT, Garner AM, Akehurst RL, Esler MD, Pietzsch JB. Cost-effectiveness and clinical effectiveness of catheter-based renal denervation for resistant hypertension. J Am Coll Cardiol. 2012;60(14):1271–7.

    Article  PubMed  Google Scholar 

  43. Lambert GW, Hering D, Esler MD, Marusic P, Lambert EA, Tanamas SK, Shaw J, Krum H, Dixon JB, Barton DA, Schlaich MP. Health-related quality of life after renal denervation in patients with treatment-resistant hypertension. Hypertension. 2012;60(6):1479–84.

    Article  CAS  PubMed  Google Scholar 

  44. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Böhm M, Cremers B, Esler MD, Schlaich MP. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23(7):1250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, Böhm M, Lambert EA, Krum H, Sobotka PA, Schmieder RE, Ika-Sari C, Eikelis N, Straznicky N, Lambert GW, Esler MD. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013;168(3):2214–20.

    Google Scholar 

  46. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, Hoppe UC, Vonend O, Rump LC, Sobotka PA, Krum H, Esler M, Böhm M. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6.

    Article  CAS  PubMed  Google Scholar 

  47. Schlaich MP, Straznicky N, Grima M, Ika-Sari C, Dawood T, Mahfoud F, Lambert E, Chopra R, Socratous F, Hennebry S, Eikelis N, Böhm M, Krum H, Lambert G, Esler MD, Sobotka PA. Renal denervation: a potential new treatment modality for polycystic ovary syndrome? J Hypertens. 2011;29(5):991–6.

    Article  CAS  PubMed  Google Scholar 

  48. Witkowski A, Prejbisz A, Florczak E, Kądziela J, Śliwiński P, Bieleń P, Michałowska I, Kabat M, Warchoł E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz A. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58(4):559–65.

    Article  CAS  PubMed  Google Scholar 

  49. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60(13):1163–70.

    Article  PubMed  Google Scholar 

  50. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, Hoppe UC. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9.

    Article  PubMed  Google Scholar 

  51. Fadl Elmula FE, Hoffmann P, Larstorp AC, Fossum E, Brekke M, Kjeldsen SE, Gjønnæss E, Hjørnholm U, Kjaer VN, Rostrup M, Os I, Stenehjem A, Høieggen A. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension. 2014;63(5):991–9.

    Article  CAS  PubMed  Google Scholar 

  52. Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res. 2015;116(6):1074–95.

    Article  CAS  PubMed  Google Scholar 

  53. Lohmeier TE, Lohmeier JR, Haque A, Hildebrandt DA. Baroreflexes prevent neurally induced sodium retention in angiotensin hypertension. Am J Physiol Regul Integr Comp Physiol. 2000;279(4):R1437–48.

    CAS  PubMed  Google Scholar 

  54. Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension. 2004;43(2):306–11.

    Article  CAS  PubMed  Google Scholar 

  55. Barrett CJ, Guild SJ, Ramchandra R, Malpas SC. Baroreceptor denervation prevents sympathoinhibition during angiotensin II-induced hypertension. Hypertension. 2005;46(1):168–72.

    Article  CAS  PubMed  Google Scholar 

  56. Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension. 2007;49(6):1307–14.

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz SI, Griffith LS, Neistadt A, Hagfors N. Chronic carotid sinus nerve stimulation in the treatment of essential hypertension. Am J Surg. 1967;114:5–15.

    Article  CAS  PubMed  Google Scholar 

  58. Neistadt A, Schwartz SI. Effects of electrical stimulation of the carotid sinus nerve in reversal of experimentally induced hypertension. Surgery. 1967;61:923–31.

    CAS  PubMed  Google Scholar 

  59. Brest AN, Wiener L, Bachrach B. Bilateral carotid sinus nerve stimulation in the treatment of hypertension. Am J Cardiol. 1972;29:821–5.

    Article  CAS  PubMed  Google Scholar 

  60. Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS. Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N Engl J Med. 1967;277(24):1278–83.

    Article  CAS  PubMed  Google Scholar 

  61. Grassi G, Seravalle G, Brambilla G, Cesana F, Giannattasio C, Mancia G. Similarities and differences between renal sympathetic denervation and carotid baroreceptor stimulation. Curr Vasc Pharmacol. 2014;12(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  62. Scheffers IJ, Kroon AA, Tordoir JH, de Leeuw PW. Rheos Baroreflex hypertension therapy system to treat resistant hypertension. Expert Rev Med Devices. 2008;5(1):33–9.

    Article  PubMed  Google Scholar 

  63. Tordoir JH, Scheffers I, Schmidli J, Savolainen H, Liebeskind U, Hansky B, Herold U, Irwin E, Kroon AA, de Leeuw P, Peters TK, Kieval R, Cody R. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur J Vasc Endovasc Surg. 2007;33(4):414–21.

    Google Scholar 

  64. Alnima T, de Leeuw PW, Kroon AA. Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiol Res Pract. 2012;2012:587194. Epub 2012 Jun 12.

    PubMed  PubMed Central  Google Scholar 

  65. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, Cates AW, Lovett EG, Haller H. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.

    Article  PubMed  Google Scholar 

  66. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, Ceral J, Eckert S, Erglis A, Narkiewicz K, Philipp T, de Leeuw PW. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8.

    Article  PubMed  Google Scholar 

  67. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, de Leeuw PW, Sica DA. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58(7):765–73.

    Article  PubMed  Google Scholar 

  68. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8.

    Article  PubMed  Google Scholar 

  69. Borisenko O, Beige J, Lovett EG, Hoppe UC, Bjessmo S. Cost-effectiveness of Barostim therapy for the treatment of resistant hypertension in European settings. J Hypertens. 2014;32(3):681–92.

    Article  CAS  PubMed  Google Scholar 

  70. Wallbach M, Lehnig LY, Schroer C, Hasenfuss G, Müller GA, Wachter R, Koziolek MJ. Impact of baroreflex activation therapy on renal function—a pilot study. Am J Nephrol. 2014;40(4):371–80.

    Article  PubMed  Google Scholar 

  71. Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, Klug D, Lovett EG, MĂĽller-Ehmsen J, Schafer JE, Senni M, Swarup V, Wachter R, Little WC. Baroreflex activation therapy for the treatment of heart failure with reduced ejection fraction. JACC Heart Fail. 2015.

    Google Scholar 

  72. Bisognano JD, Kaufman CL, Bach DS, Lovett EG, de Leeuw P, DEBuT-HT and Rheos Feasibility Trial Investigators. Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. J Am Coll Cardiol. 2011;57(17):1787–8.

    Google Scholar 

  73. Lohmeier TE, Hildebrandt DA, Dwyer TM, Barrett AM, Irwin ED, Rossing MA, Kieval RS. Renal denervation does not abolish sustained baroreflex-mediated reductions in arterial pressure. Hypertension. 2007;49(2):373–9.

    Google Scholar 

  74. Lobo MD, Sobotka PA, Stanton A, Cockcroft JR, Sulke N, Dolan E, van der Giet M, Hoyer J, Furniss SS, Foran JP, Witkowski A, Januszewicz A, Schoors D, Tsioufis K, Rensing BJ, Scott B, Ng GA, Ott C, Schmieder RE; ROX CONTROL HTN Investigators. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet. 2015;385(9978):1634–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Thomas MD, FACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, G. (2016). Devices to Treat Hypertension in Chronic Kidney Disease. In: Singh, A., Agarwal, R. (eds) Core Concepts in Hypertension in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6436-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6436-9_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6434-5

  • Online ISBN: 978-1-4939-6436-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics