Skip to main content

Diagnosis and Management of Hypertension in Children with Chronic Kidney Disease

  • Chapter
  • First Online:
Core Concepts in Hypertension in Kidney Disease

Abstract

Hypertension is increasingly recognized as a common feature of pediatric chronic kidney disease (CKD) that is associated with CKD progression, early markers of cardiovascular disease and neurocognitive functioning. Recent studies have demonstrated that the prevalence of hypertension in this population is higher than previously thought, and frequently underdiagnosed and undertreated. Identifying and treating hypertension in children with CKD requires familiarity with correct measurement technique, use of normative values to determine hypertensive status, and appropriate application of ambulatory blood pressure monitoring (ABPM). Consensus guidelines issued over the past decade have incorporated research on the consequences of hypertension in recommendations for the diagnosis and treatment of hypertension in pediatric CKD, and include lower blood pressure (BP) targets. Agents which target the renin–angiotensin–aldosterone system (RAAS) should be considered first-line therapy in CKD-associated hypertension in children, though multiple medications may be required to achieve sufficient BP control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2013. Available at: http://www.usrds.org/adr.aspx. Accessed 25 June 2015

  2. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;34:13–8.

    Article  Google Scholar 

  3. Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995;123:754–62.

    Article  CAS  PubMed  Google Scholar 

  4. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1913–20.

    Article  Google Scholar 

  5. Rosner B, Prineas RJ, Loggie JMH, et al. Blood pressure nomograms for children and adolescents, by height, sex and age, in the United States. J Pediatr. 1993;123:871–86.

    Article  CAS  PubMed  Google Scholar 

  6. Giliam RF, Prineas RJ, Horibe H. Maturation vs age: assessing blood pressure by height. J Nat Med Assoc. 1982;74:43–6.

    Google Scholar 

  7. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004;114:555–576

    Google Scholar 

  8. Becker GJ, Wheeler DC. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 2012;2:S337–414.

    Article  Google Scholar 

  9. Din-Dzietham R, Liu Y, Bielo MV, et al. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation. 2007;116:1488–96.

    Article  PubMed  Google Scholar 

  10. McNiece KL, Poffenbarger TS, Turner JL, et al. Prevalence of hypertension and pre-hypertension among adolescents. J Pediatr. 2007;150:640–4.

    Article  PubMed  Google Scholar 

  11. Mitsnefes M, Ho P-L, McEnery PT. Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol. 2003;14:2618–22.

    Article  PubMed  Google Scholar 

  12. Flynn JT, Mitsnefes M, Pierce C, et al. Blood pressure in children with chronic kidney disease. Hypertension. 2008;52:631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samuels J, Ng D, Flynn JT, et al. Ambulatory blood pressure patterns in children with chronic kidney disease. Hypertension. 2012;60:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flynn JT, Daniels SR, Hayman LL, et al. Update: Ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension. 2014;63:1116–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kavey RW, Allade V, Daniels SR, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science: The Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: Endorsed by the American Academy of Pediatrics. Circulation 2006;114:2710–2738

    Google Scholar 

  16. Parekh RS, Carroll CE, Wolfe RA, et al. Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr. 2002;141:191–7.

    Article  CAS  PubMed  Google Scholar 

  17. Halbach SM, Martz K, Mattoo T, et al. Predictors of blood pressure and its control in pediatric patients receiving dialysis. J Pediatr. 2012;160:621–5.

    Article  PubMed  Google Scholar 

  18. Chavers BM, Solid CA, Daniels FX, et al. Hypertension in pediatric long-term hemodialysis patients in the United States. Clin J Am Soc Nephrol. 2009;4:1363–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kramer AM, van Stralen KJ, Jager KJ, et al. Demographics of blood pressure and hypertension in children on renal replacement therapy in Europe. Kidney Int. 2011;80:1092–8.

    Article  PubMed  Google Scholar 

  20. Sorof JM, Sullivan EK, Tejani A, et al. Antihypertensive mediation and renal allograft failure: A North American Renal Transplant Cooperative Study report. J Am Soc Nephrol. 1999;10:1324–30.

    CAS  PubMed  Google Scholar 

  21. Sinha MD, Kerecuk L, Gilg J, et al. Systemic arterial hypertension in children following renal transplantation: prevalence and risk factors. Nephrol Dial Transplant. 2012;27:3359–68.

    Article  PubMed  Google Scholar 

  22. Seeman T, Simkova E, Kreisinger J, et al. Control of hypertension in children after renal transplant. Pediatr Transplant. 2006;10:316–22.

    Article  CAS  PubMed  Google Scholar 

  23. Gulhan B, Topaloglu R, Karabulut E, et al. Post-transplant hypertension in pediatric kidney transplant recipients. Pediatr Nephrol. 2014;29:1075–80.

    Article  PubMed  Google Scholar 

  24. McGlothan KR, Wyatt RJ, Ault BH, et al. Predominance of nocturnal hypertension in pediatric renal allograft recipients. Pediatr Transplant. 2006;10:558–64.

    Article  PubMed  Google Scholar 

  25. National Kidney Foundation. KDOQI Clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis. 2004;43:S1–290

    Google Scholar 

  26. Kogon AJ, Pierce CB, Cox C, et al. Nephrotic-range proteinuria is strongly associated with poor blood pressure control in pediatric chronic kidney disease. Kidney Int. 2014;85:938–44.

    Article  PubMed  Google Scholar 

  27. Fatallah-Shaykh SA, Flynn JT, Pierce CB, et al. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol. 2015;10:571–7.

    Article  Google Scholar 

  28. Hadstein C, Schaefer F. Hypertension in children with chronic kidney disease: pathophysiology and management. Pediatr Nephrol. 2008;23:363–71.

    Article  Google Scholar 

  29. Gomez-Marin O, Prineas RJ, Rastam L. Cuff bladder width and blood pressure measurement in children and adolescents. J Hypertens. 1992;10:1235–41.

    Article  CAS  PubMed  Google Scholar 

  30. Flynn JT, Pierce CB, Miller ER, et al. Reliability of resting blood pressure measurement and classification using an oscillometric device in children with chronic kidney disease. J Pediatr. 2012;160:434–40.

    Article  PubMed  Google Scholar 

  31. Park MK, Menard SW, Yuan C. Comparison of auscultatory and oscillometric blood pressures. Arch Pediatr Adolesc Med. 2001;155:50–3.

    Article  CAS  PubMed  Google Scholar 

  32. Butani L, Morgenstern BZ. Are pitfalls of oscillometric blood pressure measurements preventable in children? Pediatr Nephrol. 2003;18:313–8.

    Article  PubMed  Google Scholar 

  33. Wuhl E, Witte K, Soergel M, et al. German Working Group on Pediatric Hypertension. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20:1995–2007.

    Article  PubMed  Google Scholar 

  34. Soergel M, Kirschstein M, Busch C, et al. Oscillometric twenty-four-hour ambulatory blood pressure values in children and adolescents: a multicenter trial including 1141 subjects. J Pediatr. 1997;130:178–84.

    Article  CAS  PubMed  Google Scholar 

  35. Flynn JT. Ambulatory blood pressure monitoring in children: imperfect yet essential. Pediatr Nephrol. 2011;26:2089–94.

    Article  PubMed  Google Scholar 

  36. Baracco R, Mattoo TK. Pediatric hypertensive emergencies. Curr Hypertens Rep. 2014;16:456.

    Article  PubMed  Google Scholar 

  37. Shroff R, Degi A, Kerti A, et al. Cardiovascular risk assessment in children with chronic kidney disease. Pediatr Nephrol. 2013;28:875–84.

    Article  PubMed  Google Scholar 

  38. Brady TM, Schneider MF, Flynn JT, et al. Carotid intima-media thickness in children with CKD: results from the CKiD study. Clin J Am Soc Nephrol. 2012;7:1930–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lindblad YT, Axelsson J, Balzano R, et al. Left ventricular diastolic dysfunction by tissue Doppler echocardiography in pediatric chronic kidney disease. Pediatr Nephrol. 2013;28:2003–13.

    Article  PubMed  Google Scholar 

  40. Hanevold C, Waller J, Daniels S, et al. The effects of obesity, gender and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics. 2004;113:328–33.

    Article  PubMed  Google Scholar 

  41. Daniels SR, Loggie JM, Khoury P, et al. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97:1907–11.

    Article  CAS  PubMed  Google Scholar 

  42. Khoury PR, Mitsnefes M, Daniels SR, et al. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22:709–14.

    Article  PubMed  Google Scholar 

  43. Wingen AM, Fabian-Bach C, Schaefer F, et al. Randomized multi-centre study of a low-protein diet on the progression of chronic renal failure in children. Lancet. 1997;349:1117–23.

    Article  CAS  PubMed  Google Scholar 

  44. Staples AO, Greenbaum LA, Smith JM, et al. Association between clinical risk factors and progression of chronic kidney disease in children. Clin J Am Soc Nephrol. 2010;5:2172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ksiazek A, Klosowska J, Sygulla K, et al. Arterial hypertension and progression of chronic kidney disease in children during 10-year ambulatory observation. Clin Exp Hypertens. 2013;35:424–9.

    Article  PubMed  Google Scholar 

  46. Warady BA, Abraham AG, Schwartz GJ, et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort. Am J Kidney Dis. 2015;65:878–88.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Johnstone LM, Jones CL, Grigg LE, et al. Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int. 1996;50:998–1006.

    Article  CAS  PubMed  Google Scholar 

  48. Matteucci MC, Wuhl E, Picca S, et al. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol. 2006;17:218–26.

    Article  PubMed  Google Scholar 

  49. Sinha MD, Tibby SM, Rasmussen P, et al. Blood pressure control and left ventricular mass in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:543–51.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mitsnefes M, Flynn J, Cohn S, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. Clin J Am Soc Nephrol. 2010;21:137–44.

    Article  CAS  Google Scholar 

  51. Simpson JM, Savis A, Rawlins D, et al. Incidence of left ventricular hypertrophy in children with kidney disease: impact of method of indexation of left ventricular mass. Eur J Echocardiogr. 2010;11:271–7.

    Article  PubMed  Google Scholar 

  52. Matteucci MC, Chinali M, Rinelli G, et al. Change in cardiac geometry and function in CKD children during strict BP control: A randomized study. Clin J Am Soc Nephrol. 2013;8:203–10.

    Article  CAS  PubMed  Google Scholar 

  53. Kupferman JC, Friedman LA, Cox C, et al. BP control and left ventricular hypertrophy regression in children with CKD. J Am Soc Nephrol. 2014;25:167–74.

    Article  PubMed  Google Scholar 

  54. Mitsnefes MM, Kimball TR, Kartal J, et al. Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol. 2005;16:2796–803.

    Article  CAS  PubMed  Google Scholar 

  55. Litwin M, Wuhl E, Jourdan C, et al. Evolution of large-vessel arteriopathy in paediatric patients with chronic kidney disease. Nephrol Dial Transplant. 2008;23:2552–7.

    Article  PubMed  Google Scholar 

  56. Barletta GM, Flynn J, Mitsnefes M, et al. Heart rate and blood pressure variability in children with chronic kidney disease: a report from the CKiD study. Pediatr Nephrol. 2014;29:1059–65.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fukuta H, Hayano J, Ishihara S, et al. Prognostic value of heart rate variability in patients with end-stage renal disease on chronic haemodialysis. Nephrol Dial Transplant. 2003;18:318–25.

    Article  PubMed  Google Scholar 

  58. Gorostidi M, Sarafidis P, Sierra Ade L, et al. Blood pressure variability increases with advancing chronic kidney disease stage (abstract). A cross-sectional analysis of 14,382 hypertensive patients from Spain. J Hypertens. 2015;33 Suppl 1:e40

    Google Scholar 

  59. Tanner RM, Shimbo D, Dreisbach AW, et al. Association between 24-hour blood pressure variability and chronic kidney disease: a cross-sectional analysis of African Americans participating in the Jackson heart study. BMC Nephrol. 2015;16:84.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lande MB, Kaczorowski JM, Auinger P, et al. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr. 2003;143:720–4.

    Article  PubMed  Google Scholar 

  61. Lande MB, Adams H, Falkner B, et al. Parental assessments of internalizing and externalizing behavior and executive function in children with primary hypertension. J Pediatr. 2009;154:207–12.

    Article  PubMed  Google Scholar 

  62. Lande MB, Adams H, Falkner B, et al. Parental assessment of executive function and internalizing and externalizing behavior in primary hypertension after anti-hypertensive therapy. J Pediatr. 2010;157:114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hooper SR, Gerson AC, Butler RW, et al. Neurocognitive functioning of children and adolescents with mild-to-moderate chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:1824–30.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lande MB, Gerson AC, Hooper SR, et al. Casual blood pressure and neurocognitive function in children with chronic kidney disease: a report of the children with chronic kidney disease cohort study. Clin J Am Soc Nephrol. 2011;6:1831–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chobanian AV, Bakris GL, Black HR, et al. Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure; National Heart, Lung and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection. Hypertension. 2003;42:1206–52.

    Article  CAS  PubMed  Google Scholar 

  66. The ESCAPE Trial Group. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.

    Article  Google Scholar 

  67. Lurbe E, Cifkova R, Cruickshank JK, et al. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens. 2009;27:1719–42.

    Article  CAS  PubMed  Google Scholar 

  68. Gorostidi M, Sarafidis PA, de la Sierra A, et al. Differences between office and 24-hour blood pressure control in hypertensive patients with CKD: a 5693-patient cross-sectional analysis from Spain. Am J Kidney Dis. 2013;62:285–94.

    Article  PubMed  Google Scholar 

  69. Cha RH, Kim S, Ae YS, et al. Association between blood pressure and target organ damage in patients with chronic kidney disease and hypertension: results of the APrODiTe study. Hypertens Res. 2013;37:172–8.

    Article  PubMed  Google Scholar 

  70. Gabbai FB, Rahman M, Hu B, et al. Relationship between ambulatory BP and clinical outcomes in patients with hypertensive CKD. Clin J Am Soc Nephrol. 2012;7:1770–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fedecostante M, Spannella F, Cola G, et al. Chronic kidney disease is characterized by “double trouble” higher pulse pressure plus night-time systolic blood pressure and more severe cardiac damage. PLoS One. 2014;9(1):e86155.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yano Y, Bakris GL, Matsushita K, et al. Both chronic kidney disease and nocturnal blood pressure associate with strokes in elderly. Am J Nephrol. 2013;38:195–203.

    Article  PubMed  Google Scholar 

  73. Wilson AC, Schneider MF, Cox C, et al. Prevalence and correlates of multiple cardiovascular risk factors in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:2759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferguson M, Flynn JT. Rational use of antihypertensive medications in children. Pediatr Nephrol. 2014;29:979–88.

    Article  PubMed  Google Scholar 

  75. Gartenmann AC, Fossali E, von Vigier RO, et al. Better renoprotective effect of angiotensin II antagonist compared to dihydropyridine calcium channel blocker in childhood. Kidney Int. 2003;64:1450–4.

    Article  CAS  PubMed  Google Scholar 

  76. The ONTARGET Investigators. Telmisartan, ramipril or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  Google Scholar 

  77. Wright Jr JT, Bakris G, Greene T, et al. African American study of kidney disease and hypertension: effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2003;288:2421–31.

    Article  Google Scholar 

  78. Sullivan JE, Keefe D, Zhou Y, et al. Pharmacokinetics, safety profile, and efficacy of aliskiren in pediatric patients with hypertension. Clin Pediatr. 2013;52:599–607.

    Article  Google Scholar 

  79. Harel Z, Gilbert C, Wald R, et al. The effect of combination treatment with aliskiren and blockers of the renin-angiotensin system on hyperkalemia and acute kidney injury: systematic review and meta-analysis. BMJ. 2012;344:e42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Flynn MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halbach, S.M., Flynn, J.T. (2016). Diagnosis and Management of Hypertension in Children with Chronic Kidney Disease. In: Singh, A., Agarwal, R. (eds) Core Concepts in Hypertension in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6436-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6436-9_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6434-5

  • Online ISBN: 978-1-4939-6436-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics