Skip to main content

Genetic Syndromes of Renal Hypertension

  • Chapter
  • First Online:
Book cover Core Concepts in Hypertension in Kidney Disease
  • 837 Accesses

Abstract

Numerous molecular pathways for hypertension have been identified through advances in genetic mapping and sequencing techniques since the early 1990s. Particularly, the study of rare hypertension syndromes led to understanding of blood pressure-regulating pathways and identification of novel drug targets. The most common mechanism underlying many of these mostly inherited syndromes is increased renal sodium reabsorption, highlighting the importance of the kidney in regulating blood pressure. Increased activation of the mineralocorticoid signaling pathway and the malfunctioning of the sympathetic nervous system have both been implicated in inducing renal hypertension as well, while complementary studies examining lower blood pressure phenotypes have identified novel pathways exclusively linked to renal sodium wasting. The investigation and understanding of rare inherited syndromes of renal hypertension have important implications on improving both diagnosis and treatment of hypertension in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23. Epub 2005/01/18.

    Article  PubMed  Google Scholar 

  2. Mosterd A, D’Agostino RB, Silbershatz H, Sytkowski PA, Kannel WB, Grobbee DE, et al. Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. N Engl J Med. 1999;340(16):1221–7. Epub 1999/04/22.

    Article  CAS  PubMed  Google Scholar 

  3. WHO. Global health risks: mortality and burden of disease attributable to selected major risks. WHO Library Cataloguing-in-Publication Data. 2009.

    Google Scholar 

  4. Weitz W. Zur Atiology der genuinen Hypertonie. Klin Med. 1923;96:151.

    Google Scholar 

  5. Platt R. Heredity in hypertension. Q J Med. 1947;16(3):111–33. Epub 1947/07/01.

    CAS  PubMed  Google Scholar 

  6. Pickering GW. The genetic factor in essential hypertension. Ann Intern Med. 1955;43(3):457–64. Epub 1955/09/01.

    Article  CAS  PubMed  Google Scholar 

  7. Stanton JL, Braitman LE, Riley Jr AM, Khoo CS, Smith JL. Demographic, dietary, life style, and anthropometric correlates of blood pressure. Hypertension. 1982;4(5 Pt 2):III135–42. Epub 1982/09/01.

    CAS  PubMed  Google Scholar 

  8. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24. Epub 1997/04/17.

    Article  CAS  PubMed  Google Scholar 

  9. Feinleib M, Garrison RJ, Fabsitz R, Christian JC, Hrubec Z, Borhani NO, et al. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol. 1977;106(4):284–5. Epub 1977/10/01.

    CAS  PubMed  Google Scholar 

  10. Rice T, Vogler GP, Perusse L, Bouchard C, Rao DC. Cardiovascular risk factors in a French Canadian population: resolution of genetic and familial environmental effects on blood pressure using twins, adoptees, and extensive information on environmental correlates. Genet Epidemiol. 1989;6(5):571–88. Epub 1989/01/01.

    Article  CAS  PubMed  Google Scholar 

  11. Hottenga JJ, Boomsma DI, Kupper N, Posthuma D, Snieder H, Willemsen G, et al. Heritability and stability of resting blood pressure. Twin Res Hum Genet. 2005;8(5):499–508. Epub 2005/10/11.

    Article  PubMed  Google Scholar 

  12. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545–56. Epub 2001/03/10.

    Article  CAS  PubMed  Google Scholar 

  13. Toka HR, Luft FC. Monogenic forms of human hypertension. Semin Nephrol. 2002;22(2):81–8. Epub 2002/03/14.

    Article  CAS  PubMed  Google Scholar 

  14. Bockenhauer D, Medlar AJ, Ashton E, Kleta R, Lench N. Genetic testing in renal disease. Pediatr Nephrol. Epub 2011/05/28.

    Google Scholar 

  15. Bailey-Wilson JE, Wilson AF. Linkage analysis in the next-generation sequencing era. Hum Hered. 72(4):228–36. Epub 2011/12/23.

    Google Scholar 

  16. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9. Epub 2008/04/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–5. Epub 1992/01/16.

    Article  CAS  PubMed  Google Scholar 

  18. Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F, et al. Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet. 1992;2(1):66–74. Epub 1992/09/11.

    Article  CAS  PubMed  Google Scholar 

  19. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet. 1995;10(4):394–9. Epub 1995/08/01.

    Article  CAS  PubMed  Google Scholar 

  20. White PC, Mune T, Agarwal AK. 11 beta-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev. 1997;18(1):135–56. Epub 1997/02/01.

    CAS  PubMed  Google Scholar 

  21. Liddle GW, Bledsoe T, Coppage Jr WS. A familial renal disorder stimulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Phys. 1963;76:199–213.

    CAS  Google Scholar 

  22. Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s syndrome revisited–a disorder of sodium reabsorption in the distal tubule. N Engl J Med. 1994;330(3):178–81. Epub 1994/01/20.

    Article  CAS  PubMed  Google Scholar 

  23. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79(3):407–14. Epub 1994/11/04.

    Article  CAS  PubMed  Google Scholar 

  24. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11(1):76–82. Epub 1995/09/01.

    Article  CAS  PubMed  Google Scholar 

  25. Rotin D, Kanelis V, Schild L. Trafficking and cell surface stability of ENaC. Am J Physiol Renal Physiol. 2001;281(3):F391–9. Epub 2001/08/15.

    CAS  PubMed  Google Scholar 

  26. Roy LF, Villeneuve JP, Dumont A, Dufresne LR, Duran MA, Morin C, et al. Irreversible renal failure associated with triamterene. Am J Nephrol. 1991;11(6):486–8. Epub 1991/01/01.

    Article  CAS  PubMed  Google Scholar 

  27. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289(5476):119–23. Epub 2000/07/07.

    Article  CAS  PubMed  Google Scholar 

  28. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48(11):2293–300. Epub 2006/12/13.

    Article  CAS  PubMed  Google Scholar 

  29. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331(6018):768–72. Epub 2011/02/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boulkroun S, Beuschlein F, Rossi GP, Golib-Dzib JF, Fischer E, Amar L, et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension. 2012;59(3):592–8. Epub 2012/01/26.

    Article  CAS  PubMed  Google Scholar 

  31. Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008;93(8):3117–23. Epub 2008/05/29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A. 2012;109(7):2533–8. Epub 2012/02/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scholl UI, Goh G, Stolting G, de Oliveira RC, Choi M, Overton JD, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013;45(9):1050–4. Epub 2013/08/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. 2013;45(9):1055–60. Epub 2013/08/06.

    Article  CAS  PubMed  Google Scholar 

  35. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45(4):440–4, 4e1–2. Epub 2013/02/19.

    Google Scholar 

  36. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349(8):776–88. Epub 2003/08/22.

    Article  CAS  PubMed  Google Scholar 

  37. Speiser PW. Medical treatment of classic and nonclassic congenital adrenal hyperplasia. Adv Exp Med Biol. 2011;707:41–5. Epub 2011/06/22.

    Article  CAS  PubMed  Google Scholar 

  38. Gordon RD, Geddes RA, Pawsey CG, O'Halloran MW. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med. 1970;19(4):287–94. Epub 1970/11/01.

    CAS  PubMed  Google Scholar 

  39. Mayan H, Vered I, Mouallem M, Tzadok-Witkon M, Pauzner R, Farfel Z. Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab. 2002;87(7):3248–54. Epub 2002/07/11.

    Article  CAS  PubMed  Google Scholar 

  40. Schambelan M, Sebastian A, Rector Jr FC. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int. 1981;19(5):716–27. Epub 1981/05/01.

    Article  CAS  PubMed  Google Scholar 

  41. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12. Epub 2001/08/11.

    Article  CAS  PubMed  Google Scholar 

  42. Kahle KT, Wilson FH, Lalioti M, Toka H, Qin H, Lifton RP. WNK kinases: molecular regulators of integrated epithelial ion transport. Curr Opin Nephrol Hypertens. 2004;13(5):557–62. Epub 2004/08/10.

    Article  CAS  PubMed  Google Scholar 

  43. Rotin D, Staub O. Nedd4-2 and the regulation of epithelial sodium transport. Front Physiol. 2012;3:212. Epub 2012/06/28.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alessi DR, Zhang J, Khanna A, Hochdorfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Science signaling. 2014;7(334):re3. Epub 2014/07/17.

    Google Scholar 

  45. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482(7383):98–102. Epub 2012/01/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pacak K, Linehan WM, Eisenhofer G, Walther MM, Goldstein DS. Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma. Ann Intern Med. 2001;134(4):315–29. Epub 2001/02/22.

    Article  CAS  PubMed  Google Scholar 

  47. Tischler AS. Molecular and cellular biology of pheochromocytomas and extra-adrenal paragangliomas. Endocr Pathol. 2006;17(4):321–8. Epub 2007/05/26.

    Article  CAS  PubMed  Google Scholar 

  48. Juhlin CC, Stenman A, Haglund F, Clark VE, Brown TC, Baranoski J, et al. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer. 2015;54(9):542–54. Epub 2015/06/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bilginturan N, Zileli S, Karacadag S, Pirnar T. Hereditary brachydactyly associated with hypertension. J Med Genet. 1973;10:253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toka HR, Bahring S, Chitayat D, Melby JC, Whitehead R, Jeschke E, et al. Families with autosomal dominant brachydactyly type E, short stature, and severe hypertension. Ann Intern Med. 1998;129(3):204–8. Epub 1998/08/08.

    Article  CAS  PubMed  Google Scholar 

  51. Schuster H, Wienker TF, Toka HR, Bahring S, Jeschke E, Toka O, et al. Autosomal dominant hypertension and brachydactyly in a Turkish kindred resembles essential hypertension. Hypertension. 1996;28(6):1085–92. Epub 1996/12/01.

    Article  CAS  PubMed  Google Scholar 

  52. Schuster H, Toka O, Toka HR, Busjahn A, Oztekin O, Wienker TF, et al. A cross-over medication trial for patients with autosomal-dominant hypertension with brachydactyly. Kidney Int. 1998;53(1):167–72. Epub 1998/02/07.

    Article  CAS  PubMed  Google Scholar 

  53. Jordan J, Toka HR, Heusser K, Toka O, Shannon JR, Tank J, et al. Severely impaired baroreflex-buffering in patients with monogenic hypertension and neurovascular contact. Circulation. 2000;102(21):2611–8. Epub 2000/11/22.

    Article  CAS  PubMed  Google Scholar 

  54. Naraghi R, Schuster H, Toka HR, Bahring S, Toka O, Oztekin O, et al. Neurovascular compression at the ventrolateral medulla in autosomal dominant hypertension and brachydactyly. Stroke. 1997;28(9):1749–54. Epub 1997/09/26.

    Article  CAS  PubMed  Google Scholar 

  55. Bahring S, Kann M, Neuenfeld Y, Gong M, Chitayat D, Toka HR, et al. Inversion region for hypertension and brachydactyly on chromosome 12p features multiple splicing and noncoding RNA. Hypertension. 2008;51(2):426–31. Epub 2007/12/19.

    Article  PubMed  Google Scholar 

  56. Maass PG, Aydin A, Luft FC, Schachterle C, Weise A, Stricker S, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47(6):647–53. Epub 2015/05/12.

    Article  CAS  PubMed  Google Scholar 

  57. Toka O, Tank J, Schachterle C, Aydin A, Maass PG, Elitok S, et al. Clinical effects of phosphodiesterase 3A mutations in inherited hypertension with brachydactyly. Hypertension. 2015;66(4):800–8. Epub 2015/08/19.

    Article  CAS  PubMed  Google Scholar 

  58. Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306(5699):1190–4. Epub 2004/10/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mori T, Ogawa S, Cowely Jr AW, Ito S. Role of renal medullary oxidative and/or carbonyl stress in salt-sensitive hypertension and diabetes. Clin Exp Pharmacol Physiol. 2012;39(1):125–31. Epub 2011/12/14.

    Article  CAS  PubMed  Google Scholar 

  60. Yang Q, Kim SK, Sun F, Cui J, Larson MG, Vasan RS, et al. Maternal influence on blood pressure suggests involvement of mitochondrial DNA in the pathogenesis of hypertension: the Framingham Heart Study. J Hypertens. 2007;25(10):2067–73. Epub 2007/09/22.

    Article  CAS  PubMed  Google Scholar 

  61. DeStefano AL, Gavras H, Heard-Costa N, Bursztyn M, Manolis A, Farrer LA, et al. Maternal component in the familial aggregation of hypertension. Clin Genet. 2001;60(1):13–21. Epub 2001/09/05.

    Article  CAS  PubMed  Google Scholar 

  62. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens. 2003;12(5):527–32. Epub 2003/08/16.

    Article  PubMed  Google Scholar 

  63. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8. Epub 1996/06/01.

    Article  CAS  PubMed  Google Scholar 

  64. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, et al. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14(2):152–6. Epub 1996/10/01.

    Article  CAS  PubMed  Google Scholar 

  65. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet. 1997;17(2):171–8. Epub 1997/11/05.

    Article  CAS  PubMed  Google Scholar 

  66. Lee SE, Han KH, Jung YH, Lee HK, Kang HG, Moon KC, et al. Renal transplantation in a patient with Bartter syndrome and glomerulosclerosis. Korean J Pediatr. 2011;54(1):36–9. Epub 2011/03/02.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature. 2001;414(6863):558–61. Epub 2001/12/06.

    Article  CAS  PubMed  Google Scholar 

  68. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13(9):2259–66. Epub 2002/08/23.

    Article  CAS  PubMed  Google Scholar 

  69. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12(1):24–30. Epub 1996/01/01.

    Article  CAS  PubMed  Google Scholar 

  70. Nicolet-Barousse L, Blanchard A, Roux C, Pietri L, Bloch-Faure M, Kolta S, et al. Inactivation of the Na-Cl co-transporter (NCC) gene is associated with high BMD through both renal and bone mechanisms: analysis of patients with Gitelman syndrome and Ncc null mice. J Bone Miner Res. 2005;20(5):799–808. Epub 2005/04/13.

    Article  CAS  PubMed  Google Scholar 

  71. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet. 1998;19(3):279–81. Epub 1998/07/14.

    Article  CAS  PubMed  Google Scholar 

  72. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12(3):248–53. Epub 1996/03/01.

    Article  CAS  PubMed  Google Scholar 

  73. Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci U S A.107(32):14490–5. Epub 2010/07/24.

    Google Scholar 

  74. Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG, Grimmer J, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009;106(14):5842–7. Epub 2009/03/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C. Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res. 2003;177(1–2):71–80. Epub 2003/03/06.

    Article  CAS  PubMed  Google Scholar 

  76. Schreiber R, Gubler MC, Gribouval O, Shalev H, Landau D. Inherited renal tubular dysgenesis may not be universally fatal. Pediatr Nephrol. 2010;25(12):2531–4. Epub 2010/07/08.

    Article  PubMed  Google Scholar 

  77. Gubler MC, Antignac C. Renin-angiotensin system in kidney development: renal tubular dysgenesis. Kidney Int. 2010;77(5):400–6. Epub 2009/11/20.

    Article  CAS  PubMed  Google Scholar 

  78. Sedman AB, Kershaw DB, Bunchman TE. Recognition and management of angiotensin converting enzyme inhibitor fetopathy. Pediatr Nephrol. 1995;9(3):382–5. Epub 1995/06/01.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan R. Toka MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toka, H.R. (2016). Genetic Syndromes of Renal Hypertension. In: Singh, A., Agarwal, R. (eds) Core Concepts in Hypertension in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6436-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6436-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6434-5

  • Online ISBN: 978-1-4939-6436-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics