Skip to main content

Sensual Touch: A Slow Touch System Revealed with Microneurography

  • Chapter
  • First Online:
Affective Touch and the Neurophysiology of CT Afferents

Abstract

Unmyelinated afferents responding to light touch were first described in furry animals in 1939. In humans, a similar type of afferents was identified about 50 years later (CT, C tactile) using the microneurography technique. CT afferents are present in hairy but not in the glabrous skin. Receptive fields are small (maximal 35 mm2) and patchy.

Thresholds of CT and Aβ tactile afferents fall in the same range, whereas response properties differ in most other respects. CT afferents exhibit a pronounced and long-lasting fatigue. Maximal impulse rate is about ten times higher in Aβ as CT rate does not exceed 100 impulses s−1.

CT afferents exhibit intermediate adaptation.

A key difference emerges when the dynamic range is explored using light touch stimuli moving over the skin surface. In Aβ afferents, the impulse rate increases monotonously with speed of movement, whereas in CT afferents maximal rate occurs at a fairly low speed (about 1–3 cm s−1) which corresponds fairly well to human caressing movements. The CT response to a moving touch stimulus is dependent on the temperature of the moving object with the optimal response at a neutral temperature. A similar effect is not present in Aβ afferents.

Psychoneural analyses indicate that subjects’ estimate of pleasantness during slowly moving skin touch matches the impulse rate of CT when the speed of movement or temperature of the moving object is varied. Aβ afferents do not exhibit a similar correspondence.

Functional properties of CT afferents as well as psychoneural correlations are consistent with the interpretation that the CT system has a key role in physical contact with an amiable conspecific, that is, your parents, lover, kin, or friends. It seems that the social touch hypothesis is a reasonable interpretation of the survival value of a seemingly superfluous tactile system. On the other hand, the exact role of the CT system remains to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerley R, Backlund Wasling H, Liljencrantz J, Olausson H, Johnson RD, Wessberg J (2014a) Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J Neurosci 34(8):2879–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackerley R, Saar K, McGlone F, Backlund Wasling H (2014b) Quantifying the sensory and emotional perception of touch: differences between glabrous and hairy skin. Front Behav Neurosci 8:34

    PubMed  PubMed Central  Google Scholar 

  • Adriensen H, Gybels J, Handwerker HO, van Hees J (1983) Response properties of the thin myelinated (A-delta) fibers in the human skin. J Neurophysiol 49:111–122

    Google Scholar 

  • Bessou P, Burgess PR, Perl ER, Taylor CB (1971) Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J Neurophysiol 34:116–131

    CAS  PubMed  Google Scholar 

  • Brown AG, Iggo A (1967) A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J Physiol 193(3):707–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess PR, Petit D, Warren RM (1968) Receptor types in cat hairy skin supplied by myelinated fibers. J Neurophysiol 31(6):833–848

    CAS  PubMed  Google Scholar 

  • Calford MB, Tweedale R (1991) C-fibres provide a source of masking inhibition to primary somatosensory cortex. Proc R Soc Lond B Biol Sci 243:269–275

    Google Scholar 

  • Cole J, Bushnell MC, McGlone F, Elam M, Lamarre Y, Vallbo A et al (2006) Unmyelinated tactile afferents underpin detection of low-force monofilaments. Muscle Nerve 34:105–107

    Article  PubMed  Google Scholar 

  • Cole J (1995) Pride and a daily marathon. The MIT Press, Cambridge

    Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (2008) Interoception and emotion. In: Lewis M, Haviland-Jones JM, Barrett LF (eds) Handbook of emotions, 3rd edn. Guilford Publications, New York, pp 272–288

    Google Scholar 

  • Douglas WW, Ritchie JM (1957) Non-medullated fibres in the saphenous nerve which signal touch. J Physiol 139:385–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas WW, Ritchie JM (1962) Mammalian nonmyelinated nerve fibers. Physiol Rev 42:297–334

    CAS  PubMed  Google Scholar 

  • Edin BB (2001) Cutaneous afferents provide information about knee joint movements in humans. J Physiol 531:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlanger J, Gasser HS (1924) The compound nature of the action current of nerve as disclosed by the cathode ray ocillograph. Am J Physiol 70:624–666

    Google Scholar 

  • Essick G, James A, McGlone FP (1999) Psychophysical assessment of the affective components of non-painful touch. NeuroReport 10:2083–2087

    Article  CAS  PubMed  Google Scholar 

  • Franz DN, Iggo A (1968) Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol 199(2):319–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forget R, Lamarre Y (1987) Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback. Hum Neurobiol 6:27–37

    Google Scholar 

  • Foster RW, Ramage AG (1981) The action of some chemical irritants on somatosensory receptors of the cat. Neuropharmacology 20(2):191–198

    Article  CAS  PubMed  Google Scholar 

  • Fourneret P, Paillard J, Lamarre Y, Cole J, Jeannerod M (2002) Lack of conscious recognition of one’s own actions in a haptically deafferented patient. Neuroreport 13(4): 541–547

    Google Scholar 

  • Georgopoulos AP (1976) Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. J Neurophysiol 39(1):71–83

    CAS  PubMed  Google Scholar 

  • Guest S, Essick GK, Mehrabyan A, Dessirier J-M, McGlone F (2014) Effect of hydration on the tactile and thermal sensitivity of the lip. Physiol Behav 123:127–135

    Article  CAS  PubMed  Google Scholar 

  • Hagbarth K-E, Vallbo ÅB (1968) Discharge characteristics of human muscle afferents during muscle stretch and contraction. Exp Neurol 22:674–694

    Article  CAS  PubMed  Google Scholar 

  • Hallin RG, Torebjörk HE (1974) Methods to differentiate electrically induced afferent and sympathetic C unit responses in human cutaneous nerves. Acta Physiol Scand 92(3):318–31

    Google Scholar 

  • Iggo A (1960) Cutaneous mechanoreceptors with afferent C fibres. J Physiol 152:337–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iggo A, Kornhuber HH (1977) A quantitative study of C-mechanoreceptors in hairy skin of the cat. J Physiol 271:549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 200(3):763–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inglis JT, Leeper JB, Burke D, Gandevia SC (1996) Morphology of action potentials recorded from human nerves using microneurography. Exp Brain Res 110(2):308–314

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Trulsson M, Olsson KÅ, Westberg K-G (1988) Mechanoreceptor activity from the human face and oral mucusa. Exp Brain Res 72:204–208

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Vallbo AB (1980) Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res 184(2):353–366

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Vallbo ÅB (1983) Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci 6:27–32

    Article  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM, Siegelbaum SA, Hudspeth AJ (eds) (2013) Principles of neural science, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Kenins P (1982) Responses of single nerve fibres to capsaicin applied to the skin. Neurosci Lett 29(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa T, Perl ER (1977) Primate cutaneous sensory units with unmyelinated (C) afferent fibers. J Neurophysiol 40:1325–1338 (They point out that CT are scarce in distal arm regions)

    CAS  PubMed  Google Scholar 

  • Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147(7):1615–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Vrontou S, Rice FL, Zylka MJ, Dong X, Anderson DJ (2007) Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 10:946–948

    Article  CAS  PubMed  Google Scholar 

  • Löken LS, Wessberg J, Olausson H (2007) Unmyelinated tactile (CT) afferents are present in the human peroneal and radial nerves. Society for Neuroscience Abstracts Online 827.2

    Google Scholar 

  • Löken LS, Wessberg J, Morrison I, McGlone F, Olausson H (2009) Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 12:547–548

    Article  PubMed  Google Scholar 

  • MacKenzie RA, Burke D, Skuse NF, Lethlean AK (1975) Fibre function and perception during cutaneous nerve block. J Neurol Neurosurg Psychiatry 38:865–873

    Google Scholar 

  • McGlone F, Wessberg J, Olausson H (2014) Discriminative and affective touch: sensing and feeling. Neuron 82:737–755

    Article  CAS  PubMed  Google Scholar 

  • McGlone F, Olausson H, Boyle JA, Jones-Gotman M, Dancer C, Guest S, Essick G (2012) Touching and feeling: differences in pleasant touch processing between glabrous and hairy skin in humans. Eur J Neurosci 35:1782–1788

    Article  CAS  PubMed  Google Scholar 

  • Morrison I, Löken LS, Olausson H (2010) The skin as a social organ. Exp Brain Res 204:305–314

    Article  PubMed  Google Scholar 

  • Nagi SS, Mahns DA (2013) Mechanical allodynia in human glabrous skin mediated by low-threshold cutaneous mechanoreceptors with unmyelinated fibres. Exp Brain Res 231:139–151

    Article  PubMed  Google Scholar 

  • Nordin M (1990) Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibers in the human supraorbital nerve. J Physiol 426:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa J, Torebjork E (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol 342:633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904

    Article  CAS  PubMed  Google Scholar 

  • Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo Å (2010) The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev 34:185–191

    Article  PubMed  Google Scholar 

  • Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjörk E, Handwerker H (1995) Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15(1):333–341

    CAS  PubMed  Google Scholar 

  • Shea VK, Perl ER (1985) Sensory receptors with unmyelinated (C) fibers innervating the skin of the rabbit’s ear. J Neurophysiol 54(3):491–501

    CAS  PubMed  Google Scholar 

  • Torebjörk HE, Hallin RG (1973) Perceptual changes accompanying controlled preferential blocking of A and C fibre responses in intact human skin nerves. Exp Brain Res. 16(3):321–332

    Google Scholar 

  • Trulsson M, Francis ST, Kelly EF, Westling G, Bowtell R, McGlone F (2001) Cortical responses to single mechanoreceptive afferent microstimulation revealed with fMRI. Neuroimage 13(4):613–622

    Article  CAS  PubMed  Google Scholar 

  • Vallbo ÅB (1976) Prediction of propagation block on the basis of impulse shape in single unit recordings from human nerves. Acta Physiol Scand 97:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vallbo ÅB, Hagbarth K-E (1968) Activity from skin mechanoreceptors recorded percutaneously in awake human subjects. Exp Neurol 21:270–289

    Article  CAS  PubMed  Google Scholar 

  • Vallbo AB, Olausson H, Wessberg J (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81:2753–2763

    CAS  PubMed  Google Scholar 

  • Vallbo AB, Olausson H, Wessberg J, Kakuda N (1995) Receptive filed characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J Physiol 483(3):783–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallbo A, Olausson H, Wessberg J, Norrsell U (1993) A system of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Res 628:301–304

    Article  CAS  PubMed  Google Scholar 

  • Vallbo AB, Olsson KA, Westberg K-G, Clark F (1984) Microstimulation of single tactile afferents from the human hand. Sensory attributes related to unit type and properties of receptive fields. Brain 107:727–749

    Article  PubMed  Google Scholar 

  • Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ (2013) Genetic identification of C fibers that detect massage-like stroking of hairy skin in vivo. Nature 493:669–673, CrossRef Medline

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessberg J, Olausson H, Fernström KW, Vallbo AB (2003) Receptive field properties of unmyelinated tactile afferents in the human skin. J Neurophysiol 89:1567–1575

    Article  PubMed  Google Scholar 

  • Westling GK (1972) A solid state amplifier for recording of single unit impulses with tungsten electrodes inn human nerves. Appendix (pp 294–297) to Vallbo ÅB. Single unit recording from human peripheral nerves: muscle receptor discharge in resting muscles and during voluntary contractions, pp 283-297. In: Somjen GG (ed) Neurophysiology studied in man. Excerpta Medica, Amsterdam

    Google Scholar 

  • Wiklund-Fernström K (2004) Physiological properties of unmyelinated low-threshold tactile (CT) afferents in the human hairy skin. Thesis, Göteborg University; ISBN: 91-626-6190-5

    Google Scholar 

  • Zimmerman A, Bai L, Ginty DD (2014) The gentle touch receptors of mammalian skin. Science 346(6212):950–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zotterman Y (1939) Touch, pain and tickle: an electro-physiological investigation on cutaneous sensory nerves. J Physiol 95:1–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Wessberg M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vallbo, Å., Löken, L., Wessberg, J. (2016). Sensual Touch: A Slow Touch System Revealed with Microneurography. In: Olausson, H., Wessberg, J., Morrison, I., McGlone, F. (eds) Affective Touch and the Neurophysiology of CT Afferents. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6418-5_1

Download citation

Publish with us

Policies and ethics