Skip to main content

Maternal Obesity and Programming of the Early Embryo

  • Chapter
  • First Online:
Parental Obesity: Intergenerational Programming and Consequences

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 774 Accesses

Abstract

Obesity is on the increase and becoming one of the biggest health concerns worldwide due to associated non-communicable diseases such as type 2 diabetes and cardiometabolic dysfunction. Epidemiological and experimental evidence shows that obesity does not only impact on the individual but also on progeny across generations, implying contributing causal factors other than postnatal lifestyle. A wealth of studies have confirmed that maternal obesity is linked to offspring BMI and non-communicable diseases in later life through developmental programming in utero. This is mediated by developmental plasticity whereby the developing organism adapts to prevailing conditions. Developmental plasticity and its consequences are detectable as early as preimplantation, before the mother is aware of her pregnancy. Significantly, embryo transfer and developmental studies indicate the adult non-communicable disease phenotype can be traced back to the periconception period with poorer quality oocytes and embryos. Here, we give an overview of our current understanding of mechanisms involved linking preimplantation embryo morphogenesis and metabolism through to gene expression and epigenetic regulation in response to adverse environments such as obesity. Potential upstream mediators such as embryonic environmental sensors and maternal inducers are considered, including the impact of the reproductive tract at the maternal–embryonic interphase at a time preceding the formation of a functional placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

Adenosine monophosphate-activated protein kinase

ART:

Assisted reproductive technologies

CVD:

Cardiovascular disease

DOHaD:

Developmental origins of health and disease

EGA:

Embryonic genome activation

Epi:

Epiblast

ER:

Endoplasmic reticulum

ET:

Embryo transfer

ICM:

Inner cell mass

mTORC1:

Mammalian target of rapamycin complex 1

NEFA:

Non-esterified fatty acids

NCD:

Non-communicable diseases

PE:

Primary endoderm

PPAR:

Peroxisome proliferator-activated receptor

TE:

Trophectoderm

References

  1. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378(9793):815–825

    Article  PubMed  Google Scholar 

  2. Lifestyles Statistics Team HaSCIC (2015) Statistics on obesity, physical activity and diet: England 2015. In: Service GS (ed) Health and Social Care Information Centre, 3 Mar 2015, pp 1–103

    Google Scholar 

  3. van der Steeg JW, Steures P, Eijkemans MJ, Habbema JD, Hompes PG, Burggraaff JM et al (2008) Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. Hum Reprod 23(2):324–328

    Article  PubMed  Google Scholar 

  4. Pinborg A, Petersen GL, Schmidt L (2013) Recent insights into the influence of female bodyweight on assisted reproductive technology outcomes. Women’s health 9(1):1–4

    CAS  PubMed  Google Scholar 

  5. Pasternak Y, Aviram A, Poraz I, Hod M (2013) Maternal nutrition and offspring’s adulthood NCD’s: a review. J Matern Fetal Neonatal Med 26(5):439–444

    Article  PubMed  Google Scholar 

  6. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50(6):1796–1808

    Article  CAS  PubMed  Google Scholar 

  7. Elahi MM, Cagampang FR, Mukhtar D, Anthony FW, Ohri SK, Hanson MA (2009) Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr 102(4):514–519

    Article  CAS  PubMed  Google Scholar 

  8. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51(2):383–392

    Article  CAS  PubMed  Google Scholar 

  9. Hanson MA, Gluckman PD (2014) Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 94(4):1027–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith CJ, Ryckman KK (2015) Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab Syndr Obes 8:295–302

    PubMed  PubMed Central  Google Scholar 

  11. Wei Y, Schatten H, Sun QY (2015) Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update 21(2):194–208

    Article  PubMed  Google Scholar 

  12. Fleming TP, Velazquez MA, Eckert JJ (2015) Embryos, DOHaD and David Barker. J Dev Orig Health Dis 6(5):377–383

    Article  CAS  PubMed  Google Scholar 

  13. Hansen PJ, Dobbs KB, Denicol AC, Siqueira LG (2015) Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res 363(1):237–247

    Article  PubMed  Google Scholar 

  14. Chason RJ, Csokmay J, Segars JH, DeCherney AH, Armant DR (2011) Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab 22(10):412–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scherrer U, Rexhaj E, Allemann Y, Sartori C, Rimoldi SF (2015) Cardiovascular dysfunction in children conceived by assisted reproductive technologies. Eur Heart J 36(25):1583–1589

    Article  PubMed  Google Scholar 

  16. Feuer SK, Camarano L, Rinaudo PF (2013) ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies. Mol Hum Reprod 19(4):189–204

    Article  CAS  PubMed  Google Scholar 

  17. Bloise E, Feuer SK, Rinaudo PF (2014) Comparative intrauterine development and placental function of ART concepti: implications for human reproductive medicine and animal breeding. Hum Reprod Update 20(6):822–839

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hyrapetian M, Loucaides EM, Sutcliffe AG (2014) Health and disease in children born after assistive reproductive therapies (ART. J Reprod Immunol 106:21–26

    Article  PubMed  Google Scholar 

  19. Shankaran S (2014) Outcomes from infancy to adulthood after assisted reproductive technology. Fertil Steril 101(5):1217–1221

    Article  PubMed  Google Scholar 

  20. Watkins AJ, Platt D, Papenbrock T, Wilkins A, Eckert JJ, Kwong WY et al (2007) Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc Natl Acad Sci USA 104(13):5449–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams CL, Teeling JL, Perry VH, Fleming TP (2011) Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring. BMC Biol 9:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fleming TP, Watkins AJ, Sun C, Velazquez MA, Smyth NR, Eckert JJ (2015) Do little embryos make big decisions? How maternal dietary protein restriction can permanently change an embryo. Reprod Fertil Dev 27(4):684–692

    Article  CAS  PubMed  Google Scholar 

  23. Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH (2010) Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151(8):4039–4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N et al (2012) High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One 7(11):e49217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lane M, Zander-Fox DL, Robker RL, McPherson NO (2015) Peri-conception parental obesity, reproductive health, and transgenerational impacts. Trends Endocrinol Metab 26(2):84–90

    Article  CAS  PubMed  Google Scholar 

  26. Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJ, Badger TM (2008) Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 294(2):R528–R538

    Article  CAS  PubMed  Google Scholar 

  27. Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC (2016) The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes 40(2):229–238

    CAS  Google Scholar 

  28. Lane M, Robker RL, Robertson SA (2014) Parenting from before conception. Science 345(6198):756–760

    Article  CAS  PubMed  Google Scholar 

  29. Fleming TP, Velazquez MA, Eckert JJ, Lucas ES, Watkins AJ (2012) Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim Reprod Sci 130(3–4):193–197

    Article  CAS  PubMed  Google Scholar 

  30. Jungheim ES, Moley KH (2010) Current knowledge of obesity’s effects in the pre- and periconceptional periods and avenues for future research. Am J Obstet Gynecol 203(6):525–530

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eckert JJ, Velazquez MA, Fleming TP (2015) Cell signalling during blastocyst morphogenesis. Adv Exp Med Biol 843:1–21

    Article  PubMed  Google Scholar 

  32. Pantaleon M (2015) The role of hexosamine biosynthesis and signaling in early development. Adv Exp Med Biol 843:53–76

    Article  PubMed  Google Scholar 

  33. Artus J, Chazaud C (2014) A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell Mol Life Sci 71(17):3327–3338

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137(6):859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li L, Lu X, Dean J (2013) The maternal to zygotic transition in mammals. Mol Asp Med 34(5):919–938

    Article  Google Scholar 

  36. Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28(1):33–42

    Article  CAS  PubMed  Google Scholar 

  38. Burton A, Torres-Padilla ME (2014) Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 15(11):723–734

    Article  CAS  PubMed  Google Scholar 

  39. Biechele S, Lin CJ, Rinaudo PF, Ramalho-Santos M (2015) Unwind and transcribe: chromatin reprogramming in the early mammalian embryo. Curr Opin Genet Dev 34:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frum T, Ralston A (2015) Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet 31(7):402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen T, Dent SY (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15(2):93–106

    Article  CAS  PubMed  Google Scholar 

  42. Leese HJ (2012) Metabolism of the preimplantation embryo: 40 years on. Reproduction 143(4):417–427

    Article  CAS  PubMed  Google Scholar 

  43. Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  PubMed  Google Scholar 

  44. Van Winkle LJ, Tesch JK, Shah A, Campione AL (2006) System B0,+ amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood. Hum Reprod Update 12(2):145–157

    Article  PubMed  CAS  Google Scholar 

  45. Purcell SH, Moley KH (2009) Glucose transporters in gametes and preimplantation embryos. Trends Endocrinol Meta 20(10):483–489

    Article  CAS  Google Scholar 

  46. Konigsdorf CA, Navarrete Santos A, Schmidt JS, Fischer S, Fischer B (2012) Expression profile of fatty acid metabolism genes in preimplantation blastocysts of obese and non-obese mice. Obes Facts 5(4):575–586

    Article  PubMed  CAS  Google Scholar 

  47. Gonzalez-Serrano AF, Pirro V, Ferreira CR, Oliveri P, Eberlin LS, Heinzmann J et al (2013) Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS One 8(9):e74981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG (2008) Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 14(12):667–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferreira CR, Pirro V, Eberlin LS, Hallett JE, Cooks RG (2012) Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 404(10):2915–2926

    Article  CAS  PubMed  Google Scholar 

  50. Romek M, Gajda B, Krzysztofowicz E, Kepczynski M, Smorag Z (2011) New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe. Theriogenology 75(1):42–54

    Article  CAS  PubMed  Google Scholar 

  51. McKeegan PJ, Sturmey RG (2011) The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev 24(1):59–67

    Article  CAS  PubMed  Google Scholar 

  52. Dunning KR, Robker RL (2012) Promoting lipid utilization with l-carnitine to improve oocyte quality. Anim Reprod Sci 134(1–2):69–75

    Article  CAS  PubMed  Google Scholar 

  53. Dunning KR, Russell DL, Robker RL (2014) Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction 148(1):R15–R27

    Article  CAS  PubMed  Google Scholar 

  54. Comstock IA, Kim S, Behr B, Lathi RB (2015) Increased body mass index negatively impacts blastocyst formation rate in normal responders undergoing in vitro fertilization. J Assist Reprod Genet 32(9):1299–1304

    Article  PubMed  PubMed Central  Google Scholar 

  55. McPherson NO, Bell VG, Zander-Fox DL, Fullston T, Wu LL, Robker RL et al (2015) When two obese parents are worse than one! Impacts on embryo and fetal development. Am Journal Physiol Endocrinol Metab 309(6):E568–E581

    Article  CAS  Google Scholar 

  56. Binder NK, Mitchell M, Gardner DK (2012) Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst. Reprod Fertil Dev 24(6):804–812

    Article  CAS  PubMed  Google Scholar 

  57. Leary C, Leese HJ, Sturmey RG (2015) Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Hum Reprod 30(1):122–132

    Article  PubMed  Google Scholar 

  58. Minge CE, Bennett BD, Norman RJ, Robker RL (2008) Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 149(5):2646–2656

    Article  CAS  PubMed  Google Scholar 

  59. Kubandova J, Cikos S, Burkus J, Czikkova S, Koppel J, Fabian D (2014) Amount of maternal body fat significantly affected the quality of isolated mouse preimplantation embryos and slowed down their development. Theriogenology 81(2):187–195

    Article  PubMed  Google Scholar 

  60. Gardner DK, Larman MG, Thouas GA (2010) Sex-related physiology of the preimplantation embryo. Mol Hum Reprod 16(8):539–547

    Article  CAS  PubMed  Google Scholar 

  61. Finger BJ, Harvey AJ, Green MP, Gardner DK (2015) Combined parental obesity negatively impacts preimplantation mouse embryo development, kinetics, morphology and metabolism. Hum Reprod 30(9):2084–2096

    Article  PubMed  Google Scholar 

  62. Bellver J, Mifsud A, Grau N, Privitera L, Meseguer M (2013) Similar morphokinetic patterns in embryos derived from obese and normoweight infertile women: a time-lapse study. Hum Reprod 28(3):794–800

    Article  CAS  PubMed  Google Scholar 

  63. Gardner DK, Wale PL, Collins R, Lane M (2011) Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod 26(8):1981–1986

    Article  CAS  PubMed  Google Scholar 

  64. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ et al (2002) Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 17(4):999–1005

    Article  CAS  PubMed  Google Scholar 

  65. Guerif F, McKeegan P, Leese HJ, Sturmey RG (2013) A simple approach for COnsumption and RElease (CORE) analysis of metabolic activity in single mammalian embryos. PLoS One 8(8):e67834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Hoeck V, Leroy JL, Arias Alvarez M, Rizos D, Gutierrez-Adan A, Schnorbusch K et al (2013) Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction 145(1):33–44

    Article  PubMed  CAS  Google Scholar 

  67. Leroy JL, Sturmey RG, Van Hoeck V, De Bie J, McKeegan PJ, Bols PE (2014) Dietary fat supplementation and the consequences for oocyte and embryo quality: hype or significant benefit for dairy cow reproduction? Reprod Domest Anim 49(3):353–361

    Article  CAS  PubMed  Google Scholar 

  68. Bellver J, De Los Santos MJ, Alama P, Castello D, Privitera L, Galliano D et al (2015) Day-3 embryo metabolomics in the spent culture media is altered in obese women undergoing in vitro fertilization. Fertil Steril 103(6):1407–1415.e1

    Article  CAS  PubMed  Google Scholar 

  69. Louden E, Chi MM, Moley KH (2008) Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance. Reproduction 136(3):335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xie B, Waters MJ, Schirra HJ (2012) Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol 2012:805683

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wong SL, Wu LL, Robker RL, Thompson JG, McDowall ML (2015) Hyperglycaemia and lipid differentially impair mouse oocyte developmental competence. Reprod Fertil Dev 27(4):583–592

    Article  CAS  PubMed  Google Scholar 

  72. Wu LL, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ et al (2010) High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology 151(11):5438–5445

    Article  CAS  PubMed  Google Scholar 

  73. Latham KE (2015) Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. Int Rev Cell Mol Biol 316:227–265

    Article  PubMed  PubMed Central  Google Scholar 

  74. Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR et al (2010) Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One 5(4):e10074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wakefield SL, Lane M, Schulz SJ, Hebart ML, Thompson JG, Mitchell M (2008) Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am J Physiol Endocrinol Metab 294(2):E425–E434

    Article  CAS  PubMed  Google Scholar 

  76. Wonnacott KE, Kwong WY, Hughes J, Salter AM, Lea RG, Garnsworthy PC et al (2010) Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction 139(1):57–69

    Article  CAS  PubMed  Google Scholar 

  77. Louden ED, Luzzo KM, Jimenez PT, Chi T, Chi M, Moley KH (2014) TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin. Reprod Fertil Dev 27(1):31–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Tarrade A, Rousseau-Ralliard D, Aubriere MC, Peynot N, Dahirel M, Bertrand-Michel J et al (2013) Sexual dimorphism of the feto-placental phenotype in response to a high fat and control maternal diets in a rabbit model. PLoS One 8(12):e83458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ferreira CR, Jarmusch AK, Pirro V, Alfaro CM, Gonzalez-Serrano AF, Niemann H et al (2015) Ambient ionisation mass spectrometry for lipid profiling and structural analysis of mammalian oocytes, preimplantation embryos and stem cells. Reprod Fertil Dev 27(4):621–637

    Article  CAS  PubMed  Google Scholar 

  80. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ et al (2011) Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 6(8):e23183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Picone O, Laigre P, Fortun-Lamothe L, Archilla C, Peynot N, Ponter AA et al (2011) Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology 75(2):287–299

    Article  CAS  PubMed  Google Scholar 

  82. Bermejo-Alvarez P, Rosenfeld CS, Roberts RM (2012) Effect of maternal obesity on estrous cyclicity, embryo development and blastocyst gene expression in a mouse model. Hum Reprod 27(12):3513–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shankar K, Zhong Y, Kang P, Lau F, Blackburn ML, Chen JR et al (2011) Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology 152(11):4158–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC et al (2014) DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect 122(2):159–164

    PubMed  Google Scholar 

  85. Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G et al (2014) Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155(5):1956–1969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wei Y, Yang CR, Wei YP, Ge ZJ, Zhao ZA, Zhang B et al (2015) Enriched environment-induced maternal weight loss reprograms metabolic gene expression in mouse offspring. J Biol Chem 290(8):4604–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE et al (2010) Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod 16(8):557–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee YS, Thouas GA, Gardner DK (2015) Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum Reprod 30(3):543–552

    Article  CAS  PubMed  Google Scholar 

  89. Kaser DJ, Racowsky C (2014) Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update 20(5):617–631

    Article  PubMed  Google Scholar 

  90. Montag M, Toth B, Strowitzki T (2013) New approaches to embryo selection. Reprod Biomed Online 27(5):539–546

    Article  PubMed  Google Scholar 

  91. Gardner DK, Meseguer M, Rubio C, Treff NR (2015) Diagnosis of human preimplantation embryo viability. Hum Reprod Update 21(6):727–747

    Article  PubMed  Google Scholar 

  92. Van Hoeck V, Rizos D, Gutierrez-Adan A, Pintelon I, Jorssen E, Dufort I et al (2015) Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod Fertil Dev 27(2):372–384

    Article  PubMed  CAS  Google Scholar 

  93. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB (2015) Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 103(2):303–316

    Article  PubMed  Google Scholar 

  94. Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q (2015) Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 72(2):251–271

    Article  CAS  PubMed  Google Scholar 

  95. Schulte MM, Tsai JH, Moley KH (2015) Obesity and PCOS: the effect of metabolic derangements on endometrial receptivity at the time of implantation. Reprod Sci 22(1):6–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Cavagna M, Mantese JC (2003) Biomarkers of endometrial receptivity—a review. Placenta 24(Suppl):39–47

    Article  CAS  Google Scholar 

  97. Leese HJ, Hugentobler SA, Gray SM, Morris DG, Sturmey RG, Whitear SL et al (2008) Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod Fertil Dev 20(1):1–8

    Article  CAS  PubMed  Google Scholar 

  98. Forde N, Simintiras CA, Sturmey R, Mamo S, Kelly AK, Spencer TE et al (2014) Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 9(6):e100010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Eckert JJ, Porter R, Watkins AJ, Burt E, Brooks S, Leese HJ et al (2012) Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS One 7(12):e52791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kermack AJ, Finn-Sell S, Cheong YC, Brook N, Eckert JJ, Macklon NS et al (2015) Amino acid composition of human uterine fluid: association with age, lifestyle and gynaecological pathology. Hum Reprod 30(4):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ujvari D, Hulchiy M, Calaby A, Nybacka A, Bystrom B, Hirschberg AL (2014) Lifestyle intervention up-regulates gene and protein levels of molecules involved in insulin signaling in the endometrium of overweight/obese women with polycystic ovary syndrome. Hum Reprod 29(7):1526–1535

    Article  CAS  PubMed  Google Scholar 

  102. Robertson SA, Chin PY, Schjenken JE, Thompson JG (2015) Female tract cytokines and developmental programming in embryos. Adv Exp Med Biol 843:173–213

    Article  PubMed  Google Scholar 

  103. Nahar A, Maki S, Kadokawa H (2013) Suppressed expression of granulocyte macrophage colony-stimulating factor in oviduct ampullae of obese cows. Anim Reprod Sci 139(1–4):1–8

    Article  CAS  PubMed  Google Scholar 

  104. Velazquez MA, Hadeler KG, Herrmann D, Kues WA, Ulbrich SE, Meyer HH et al (2011) In vivo oocyte developmental competence is reduced in lean but not in obese superovulated dairy cows after intraovarian administration of IGF1. Reproduction 142(1):41–52

    Article  CAS  PubMed  Google Scholar 

  105. Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA (2015) Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia 58(3):615–624

    Article  CAS  PubMed  Google Scholar 

  106. Jungheim ES, Louden ED, Chi MM, Frolova AI, Riley JK, Moley KH (2011) Preimplantation exposure of mouse embryos to palmitic acid results in fetal growth restriction followed by catch-up growth in the offspring. Biol Reprod 85(4):678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eng GS, Sheridan RA, Wyman A, Chi MM, Bibee KP, Jungheim ES et al (2007) AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations. Diabetes 56(9):2228–2234

    Article  CAS  PubMed  Google Scholar 

  108. Sim KA, Partridge SR, Sainsbury A (2014) Does weight loss in overweight or obese women improve fertility treatment outcomes? A systematic review. Obesity Rev 15(10):839–850

    Article  CAS  Google Scholar 

  109. Marsh CA, Hecker E (2014) Maternal obesity and adverse reproductive outcomes: reducing the risk. Obstet Gynecol Surv 69(10):622–628

    Article  PubMed  Google Scholar 

  110. Alm PS, Krook A, de Castro Barbosa T (2015) Maternal obesity legacy: exercise it away! Diabetologia 59(1):5–8

    Article  Google Scholar 

  111. Corvino SB, Volpato GT, Rudge MV, Damasceno DC (2015) Intrauterine growth restricted rats exercised before and during pregnancy: maternal and perinatal repercussions. Evid Based Complement Alternat Med 2015:294850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stanford KI, Lee MY, Getchell KM, So K, Hirshman MF, Goodyear LJ (2015) Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 64(2):427–433

    Article  CAS  PubMed  Google Scholar 

  113. Tsagareli V, Noakes M, Norman RJ (2006) Effect of a very-low-calorie diet on in vitro fertilization outcomes. Fertil Steril 86(1):227–229

    Article  PubMed  Google Scholar 

  114. Murashov AK, Pak ES, Koury M, Ajmera A, Jeyakumar M, Parker M et al (2015) Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J 30(2):775–784

    Article  PubMed  CAS  Google Scholar 

  115. Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ et al (2006) Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 84(2):322–327, quiz 466–7

    CAS  PubMed  Google Scholar 

  116. Reynolds KA, Boudoures AL, Chi MM, Wang Q, Moley KH (2015) Adverse effects of obesity and/or high-fat diet on oocyte quality and metabolism are not reversible with resumption of regular diet in mice. Reprod Fertil Dev 27(4):716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Salomaki H, Heinaniemi M, Vahatalo LH, Ailanen L, Eerola K, Ruohonen ST et al (2014) Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring. PLoS One 9(12):e115778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Asby DJ, Cuda F, Beyaert M, Houghton FD, Cagampang FR, Tavassoli A (2015) AMPK activation via modulation of de novo purine biosynthesis with an inhibitor of ATIC Homodimerization. Chem Biol 22(7):838–848

    Article  CAS  PubMed  Google Scholar 

  119. Segovia SA, Vickers MH, Gray C, Reynolds CM (2014) Maternal obesity, inflammation, and developmental programming. Biomed Res Int 2014:418975

    Article  PubMed  PubMed Central  Google Scholar 

  120. Roberts VH, Pound LD, Thorn SR, Gillingham MB, Thornburg KL, Friedman JE et al (2014) Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates. FASEB Journal 28(6):2466–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fan J, Krautkramer KA, Feldman JL, Denu JM (2015) Metabolic regulation of histone post-translational modifications. ACS Chem Biol 10(1):95–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Carrer A, Wellen KE (2015) Metabolism and epigenetics: a link cancer cells exploit. Curr Opin Biotechnol 34:23–29

    Article  CAS  PubMed  Google Scholar 

  123. Zhang CM, Zhao Y, Li R, Yu Y, Yan LY, Li L et al (2014) Metabolic heterogeneity of follicular amino acids in polycystic ovary syndrome is affected by obesity and related to pregnancy outcome. BMC Pregnancy Childbirth 14:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Eckert, J.J., Velazquez, M.A., Fleming, T.P. (2016). Maternal Obesity and Programming of the Early Embryo. In: Green, L., Hester, R. (eds) Parental Obesity: Intergenerational Programming and Consequences. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6386-7_5

Download citation

Publish with us

Policies and ethics