Skip to main content

Maternal Metabolic State and Cancer Risk: An Evolving Manifestation of Generational Impact

  • Chapter
  • First Online:
Book cover Parental Obesity: Intergenerational Programming and Consequences

Abstract

Metabolic stress in the early-life environment as a consequence of maternal overnutrition and obesity leads to an increased risk of adult metabolic syndrome in offspring. Given the greater risk for cancer development at a number of tissue sites for obese individuals, exposure of the highly developmentally “plastic” fetus and neonate to a dysregulated maternal endocrine milieu may similarly result in increased cancer susceptibility as adults. In rodent models, from which this concept has gained the most direct experimental support, the feedforward circuitry for cancer propensity appears to be generationally transmitted, in part, via epigenetic biochemical marks. Here, we review the current state of this nascent field with attention given to tissues that are likely impacted by the recent epidemic of maternal obesity. We highlight current thinking on underlying molecular mechanisms and discuss how such knowledge may be used to design interventional strategies for obese pregnant women to counter increased risk for malignancy in their offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C, Reusens B (2009) Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52(6):1133–1142. doi:10.1007/s00125-009-1316-9

    Article  CAS  PubMed  Google Scholar 

  2. Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL (2010) Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology 151(4):1622–1632. doi:10.1210/en.2009-1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simmen FA, Simmen RC (2011) The maternal womb: a novel target for cancer prevention in the era of the obesity pandemic? Eur J Cancer Prev 20(6):539–548. doi:10.1097/CEJ.0b013e328348fc21

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gallagher EJ, LeRoith D (2015) Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev 95(3):727–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7):595–601

    Article  CAS  PubMed  Google Scholar 

  6. Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M (1997) A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA 94(17):9372–9377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stark AH, Kossoy G, Zusman I, Yarden G, Madar Z (2003) Olive oil consumption during pregnancy and lactation in rats influences mammary cancer development in female offspring. Nutr Cancer 46(1):59–65

    Article  CAS  PubMed  Google Scholar 

  8. Lo CY, Hsieh PH, Chen HF, Su HM (2009) A maternal high-fat diet during pregnancy in rats results in a greater risk of carcinogen-induced mammary tumors in the female offspring than exposure to a high-fat diet in postnatal life. Int J Cancer 125(4):767–773. doi:10.1002/ijc.24464

    Article  CAS  PubMed  Google Scholar 

  9. Su HM, Hsieh PH, Chen HF (2010) A maternal high n-6 fat diet with fish oil supplementation during pregnancy and lactation in rats decreases breast cancer risk in the female offspring. J Nutr Biochem 21(11):1033–1037. doi:10.1016/j.jnutbio.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  10. de Oliveira AF, Fontelles CC, Rosim MP, de Oliveira TF, de Melo Loureiro AP, Mancini-Filho J, Rogero MM, Moreno FS, de Assis S, Barbisan LF, Hilakivi-Clarke L, Ong TP (2014) Exposure to lard-based high-fat diet during fetal and lactation periods modifies breast cancer susceptibility in adulthood in rats. J Nutr Biochem 25(6):613–622. doi:10.1016/j.jnutbio.2014.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Strong AL, Ohlstein JF, Biagas BA, Rhodes LV, Pei DT, Tucker HA, Llamas C, Bowles AC, Dutreil MF, Zhang S, Gimble JM, Burow ME, Bunnell BA (2015) Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 17:112. doi:10.1186/s13058-015-0622-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chang CC, Wu MJ, Yang JY, Camarillo IG, Chang CJ (2015) Leptin-STAT3-G9a signaling promotes obesity-mediated breast cancer progression. Cancer Res 75(11):2375–2386. doi:10.1158/0008-5472.CAN-14-3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montales MT, Melnyk SB, Simmen FA, Simmen RC (2014) Maternal metabolic perturbations elicited by high-fat diet promote Wnt-1-induced mammary tumor risk in adult female offspring via long-term effects on mammary and systemic phenotypes. Carcinogenesis 35(9):2102–2112. doi:10.1093/carcin/bgu106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82(8):485–491

    Article  PubMed  Google Scholar 

  15. Li C, Kaur H, Choi WS, Huang TT, Lee RE, Ahluwalia JS (2005) Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight. Obes Res 13(2):362–371

    Article  PubMed  Google Scholar 

  16. Cohn BA, La Merrill M, Krigbaum NY, Yeh G, Park JS, Zimmermann L, Cirillo PM (2015) DDT exposure in utero and breast cancer. J Clin Endocrinol Metab 100(8):2865–2872. doi:10.1210/jc.2015-1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lade A, Noon LA, Friedman SL (2014) Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer. Curr Opin Oncol 26(1):100–107. doi:10.1097/CCO.0000000000000042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bayol SA, Simbi BH, Fowkes RC, Stickland NC (2010) A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic fatty liver disease in rat offspring. Endocrinology 151(4):1451–1461. doi:10.1210/en.2009-1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, Torsoni AS, Torsoni MA (2012) Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem 23(4):341–348. doi:10.1016/j.jnutbio.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  20. Mouralidarane A, Soeda J, Sugden D, Bocianowska A, Carter R, Ray S, Saraswati R, Cordero P, Novelli M, Fusai G, Vinciguerra M, Poston L, Taylor PD, Oben JA (2015) Maternal obesity programs offspring non-alcoholic fatty liver disease through disruption of 24-h rhythms in mice. Int J Obes (Lond) 39:1339–1348. doi:10.1038/ijo.2015.85

    Article  CAS  Google Scholar 

  21. Zhou D, Wang H, Cui H, Chen H, Pan YX (2015) Early-life exposure to high-fat diet may predispose rats to gender-specific hepatic fat accumulation by programming Pepck expression. J Nutr Biochem 26(5):433–440. doi:10.1016/j.jnutbio.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  22. Seet EL, Yee JK, Jellyman JK, Han G, Ross MG, Desai M (2015) Maternal high-fat-diet programs rat offspring liver fatty acid metabolism. Lipids 50(6):565–573. doi:10.1007/s11745-015-4018-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang X, Strakovsky R, Zhou D, Zhang Y, Pan YX (2011) A maternal high-fat diet represses the expression of antioxidant defense genes and induces the cellular senescence pathway in the liver of male offspring rats. J Nutr 141(7):1254–1259. doi:10.3945/jn.111.139576

    Article  CAS  PubMed  Google Scholar 

  24. Linz AL, Xiao R, Parker JG, Simpson PM, Badger TM, Simmen FA (2004) Feeding of soy protein isolate to rats during pregnancy and lactation suppresses formation of aberrant crypt foci in their progeny’s colons: interaction of diet with fetal alcohol exposure. J Carcinog 3(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xiao R, Hennings LJ, Badger TM, Simmen FA (2007) Fetal programming of colon cancer in adult rats: correlations with altered neonatal growth trajectory, circulating IGF-I and IGF binding proteins, and testosterone. J Endocrinol 195(1):79–87

    Article  CAS  PubMed  Google Scholar 

  26. Hughes LA, van den Brandt PA, de Bruïne AP, Wouters KA, Hulsmans S, Spiertz A, Goldbohm RA, de Goeij AF, Herman JG, Weijenberg MP, van Engeland M (2009) Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One 4(11):e7951. doi:10.1371/journal.pone.0007951

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sie KK, Medline A, van Weel J, Sohn KJ, Choi SW, Croxford R, Kim YI (2011) Effect of maternal and postweaning folic acid supplementation on colorectal cancer risk in the offspring. Gut 60(12):1687–1694. doi:10.1136/gut.2011.238782

    Article  CAS  PubMed  Google Scholar 

  28. Shiell AW, Campbell DM, Hall MH, Barker DJ (2000) Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. BJOG 107(7):890–895

    Article  CAS  PubMed  Google Scholar 

  29. Umekawa T, Sugiyama T, Du Q, Murabayashi N, Zhang L, Kamimoto Y, Yoshida T, Sagawa N, Ikeda T (2015) A maternal mouse diet with moderately high-fat levels does not lead to maternal obesity but causes mesenteric adipose tissue dysfunction in male offspring. J Nutr Biochem 26(3):259–266. doi:10.1016/j.jnutbio.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  30. Graus-Nunes F, Dalla Corte Frantz E, Lannes WR, da Silva Menezes MC, Mandarim-de-Lacerda CA, Souza-Mello V (2015) Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition 31(2):380–387. doi:10.1016/j.nut.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  31. Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11):4999–5009. doi:10.1210/en.2009-0500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith T, Sloboda DM, Saffery R, Joo E, Vickers MH (2014) Maternal nutritional history modulates the hepatic IGF-IGFBP axis in adult male rat offspring. Endocrine 46(1):70–82. doi:10.1007/s12020-013-0034-8

    Article  CAS  PubMed  Google Scholar 

  33. Wieser V, Moschen AR, Tilg H (2012) Adipocytokines and hepatocellular carcinoma. Dig Dis 30(5):508–513. doi:10.1159/000341702

    Article  PubMed  Google Scholar 

  34. Aleksandrova K, Boeing H, Nöthlings U, Jenab M, Fedirko V, Kaaks R, Lukanova A, Trichopoulou A, Trichopoulos D, Boffetta P, Trepo E, Westhpal S, Duarte-Salles T, Stepien M, Overvad K, Tjønneland A, Halkjaer J, Boutron-Ruault MC, Dossus L, Racine A, Lagiou P, Bamia C, Benetou V, Agnoli C, Palli D, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita B, Peeters PH, Gram IT, Lund E, Weiderpass E, Quirós JR, Agudo A, Sánchez MJ, Gavrila D, Barricarte A, Dorronsoro M, Ohlsson B, Lindkvist B, Johansson A, Sund M, Khaw KT, Wareham N, Travis RC, Riboli E, Pischon T (2014) Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology 60(3):858–871. doi:10.1002/hep.27016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andò S, Barone I, Giordano C, Bonofiglio D, Catalano S (2014) The multifaceted mechanism of leptin signaling within tumor microenvironment in driving breast cancer growth and progression. Front Oncol 4:340. doi:10.3389/fonc.2014.00340

    PubMed  PubMed Central  Google Scholar 

  36. Hou M, Chu Z, Liu T, Lv H, Sun L, Wang B, Huang J, Yan W (2015) A high-fat maternal diet decreases adiponectin receptor-1 expression in offspring. J Matern Fetal Neonatal Med 28(2):216–221. doi:10.3109/14767058.2014.914489

    Article  CAS  PubMed  Google Scholar 

  37. Masuyama H, Hiramatsu Y (2012) Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153(6):2823–2830. doi:10.1210/en.2011-2161

    Article  CAS  PubMed  Google Scholar 

  38. Masuyama H, Hiramatsu Y (2014) Additive effects of maternal high fat diet during lactation on mouse offspring. PLoS One 9(3):e92805. doi:10.1371/journal.pone.0092805

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maffeis C, Manfredi R, Trombetta M, Sordelli S, Storti M, Benuzzi T, Bonadonna RC (2008) Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 93(6):2122–2128. doi:10.1210/jc.2007-2089

    Article  CAS  PubMed  Google Scholar 

  40. Rahal OM, Simmen RC (2010) PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis 31(8):1491–1500. doi:10.1093/carcin/bgq123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Montales MT, Rahal OM, Nakatani H, Matsuda T, Simmen RC (2013) Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells. J Endocrinol 218(1):135–149. doi:10.1530/JOE-12-0520

    Article  CAS  PubMed  Google Scholar 

  42. Pabona JM, Dave B, Su Y, Montales MT, de Lumen BO, de Mejia EG, Rahal OM, Simmen RC (2013) The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein. Genes Nutr 8(1):79–90. doi:10.1007/s12263-012-0307-5

    Article  CAS  PubMed  Google Scholar 

  43. Benesh EC, Humphrey PA, Wang Q, Moley KH (2013) Maternal high-fat diet induces hyperproliferation and alters Pten/Akt signaling in prostates of offspring. Sci Rep 3:3466. doi:10.1038/srep03466

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jenabi E, Poorolajal J (2015) The effect of body mass index on endometrial cancer: a meta-analysis. Public Health. pii: S0033-3506(15)00191-2. doi:10.1016/j.puhe.2015.04.017

    Google Scholar 

  45. Liang C, Oest ME, Prater MR (2009) Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol 86(5):377–384. doi:10.1002/bdrb.20206

    Article  CAS  PubMed  Google Scholar 

  46. Resende AC, Emiliano AF, Cordeiro VS, de Bem GF, de Cavalho LC, de Oliveira PR, Neto ML, Costa CA, Boaventura GT, de Moura RS (2013) Grape skin extract protects against programmed changes in the adult rat offspring caused by maternal high-fat diet during lactation. J Nutr Biochem 24(12):2119–2126. doi:10.1016/j.jnutbio.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  47. Masuyama H, Mitsui T, Nobumoto E, Hiramatsu Y (2015) The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in adiponectin and leptin gene expression for multiple generations in female mice. Endocrinology 156(7):2482–2491. doi:10.1210/en.2014-2020

    Article  CAS  PubMed  Google Scholar 

  48. Ng SF, Lin RC, Maloney CA, Youngson NA, Owens JA, Morris MJ (2014) Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J 28(4):1830–1841. doi:10.1096/fj.13-244046

    Article  CAS  PubMed  Google Scholar 

  49. Ornellas F, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB (2015) Programming of obesity and comorbidities in the progeny: lessons from a model of diet-induced obese parents. PLoS One 10(4):e0124737. doi:10.1371/journal.pone.0124737

    Article  PubMed  PubMed Central  Google Scholar 

  50. de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B, Wang Y, Huang TH, Hilakivi-Clarke L (1997) High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Cancer Res 57(19):4162–4163

    Google Scholar 

  51. Zheng S, Li Q, Zhang Y, Balluff Z, Pan YX (2012) Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16 (INK4a) gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet. Epigenetics 7(2):183–190. doi:10.4161/epi.7.2.18972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang KF, Cai W, Xu JL, Shi W (2012) Maternal high-fat diet programs Wnt genes through histone modification in the liver of neonatal rats. J Mol Endocrinol 49(2):107–114. doi:10.1530/JME-12-0046

    CAS  PubMed  Google Scholar 

  53. Yu HL, Dong S, Gao LF, Li L, Xi YD, Ma WW, Yuan LH, Xiao R (2015) Global DNA methylation was changed by a maternal high-lipid, high-energy diet during gestation and lactation in male adult mice liver. Br J Nutr 113(7):1032–1039. doi:10.1017/S0007114515000252

    Article  CAS  PubMed  Google Scholar 

  54. Salomäki H, Heinäniemi M, Vähätalo LH, Ailanen L, Eerola K, Ruohonen ST, Pesonen U, Koulu M (2014) Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring. PLoS One 9(12):e115778. doi:10.1371/journal.pone.0115778

    Article  PubMed  PubMed Central  Google Scholar 

  55. Salomäki H, Vähätalo LH, Laurila K, Jäppinen NT, Penttinen AM, Ailanen L, Ilyasizadeh J, Pesonen U, Koulu M (2013) Prenatal metformin exposure in mice programs the metabolic phenotype of the offspring during a high fat diet at adulthood. PLoS One 8(2):e56594. doi:10.1371/journal.pone.0056594

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chiswick C, Reynolds RM, Denison F, Drake AJ, Forbes S, Newby DE, Walker BR, Quenby S, Wray S, Weeks A, Lashen H, Rodriguez A, Murray G, Whyte S, Norman JE (2015) Effect of metformin on maternal and fetal outcomes in obese pregnant women (EMPOWaR): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 3(10):778–786. doi:10.1016/S2213-8587(15)00219-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Syngelaki A, Nicolaides KH, Balani J, Hyer S, Akolekar R, Kotecha R, Pastides A, Shehata H (2016) Metformin versus placebo in obese pregnant women without diabetes mellitus. N Engl J Med 374(5):434–443. doi:10.1056/NEJMoa1509819

    Article  CAS  PubMed  Google Scholar 

  58. Franco JG, Dias-Rocha CP, Fernandes TP, Albuquerque Maia L, Lisboa PC, Moura EG, Pazos-Moura CC, Trevenzoli IH (2016) Resveratrol treatment rescues hyperleptinemia and improves hypothalamic leptin signaling programmed by maternal high-fat diet in rats. Eur J Nutr 55(2):601–610. doi:10.1007/s00394-015-0880-7

    Google Scholar 

  59. Su Y, Eason RR, Geng Y, Till SR, Badger TM, Simmen RC (2007) In utero exposure to maternal diets containing soy protein isolate, but not genistein alone, protects young adult rat offspring from NMU-induced mammary tumorigenesis. Carcinogenesis 28(5):1046–1051

    Article  CAS  PubMed  Google Scholar 

  60. Wu X, Rahal O, Kang J, Till SR, Prior RL, Simmen RC (2009) In utero and lactational exposure to blueberry via maternal diet promotes mammary epithelial differentiation in prepubescent female rats. Nutr Res 29(11):802–811. doi:10.1016/j.nutres.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  61. Rahal OM, Pabona JM, Kelly T, Huang Y, Hennings LJ, Prior RL, Al-Dwairi A, Simmen FA, Simmen RC (2013) Suppression of Wnt1-induced mammary tumor growth and lower serum insulin in offspring exposed to maternal blueberry diet suggest early dietary influence on developmental programming. Carcinogenesis 34(2):464–474. doi:10.1093/carcin/bgs353

    Article  CAS  PubMed  Google Scholar 

  62. Cho K, Mabasa L, Bae S, Walters MW, Park CS (2012) Maternal high-methyl diet suppresses mammary carcinogenesis in female rat offspring. Carcinogenesis 33(5):1106–1112. doi:10.1093/carcin/bgs125

    Article  CAS  PubMed  Google Scholar 

  63. Liu Z, Lim CY, Su MY, Soh SL, Shui G, Wenk MR, Grove KL, Radda GK, Han W, Xiao X (2013) Neonatal overnutrition in mice exacerbates high-fat diet-induced metabolic perturbations. J Endocrinol 219(2):131–143. doi:10.1530/JOE-13-0111

    Article  CAS  PubMed  Google Scholar 

  64. Zhao Y, Tan YS, Aupperlee MD, Langohr IM, Kirk EL, Troester MA, Schwartz RC, Haslam SZ (2013) Pubertal high fat diet: effects on mammary cancer development. Breast Cancer Res 15(5):R100

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Disclosure of Potential Conflicts of Interest

Authors disclose no potential conflicts of interest.

Grant Support

Work performed in our laboratories and described here was supported by grants from the National Institutes of Health (R01 CA136493), the Department of Defense Breast Cancer Research Program (W81XWH-08-0548), and the US Department of Agriculture. This work was also funded in part by the UAMS Translational Research Institute (TRI), grant UL1TR000039 through the NIH National Center for Research Resources and National Center for Advancing Translational Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Simmen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Simmen, F.A., Heard, M.E., Pabona, J.M.P., Fernandes, L.M., Mercado, C.P., Simmen, R.C.M. (2016). Maternal Metabolic State and Cancer Risk: An Evolving Manifestation of Generational Impact. In: Green, L., Hester, R. (eds) Parental Obesity: Intergenerational Programming and Consequences. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6386-7_13

Download citation

Publish with us

Policies and ethics