Skip to main content

The Implications of Maternal Obesity on Offspring Physiology and Behavior in the Nonhuman Primate

  • Chapter
  • First Online:

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Exposure to maternal obesity and high-fat diet (HFD) consumption during perinatal development impacts numerous aspects of offspring physiology and behavior. Epidemiologic studies indicate that maternal obesity is associated with increased risk for metabolic, mental health, and neurodevelopmental disorders. As factors such as a shared environment and genetics could contribute to this association, animal studies are critical. The use of nonhuman primates is particularly important as they have a similar developmental timeline, physiology, and behavior as humans. Evidence from animal models supports the findings from human studies and indicates that maternal obesity induced by HFD consumption impairs the development of many organ systems including the brain, pancreas, liver, and cardiovascular system. These studies suggest that offspring are predisposed to obesity due to hyperphagia, increased preference for fat and sugar, and reductions in energy expenditure. Rodent and nonhuman primate offspring exposed to maternal HFD consumption exhibit increased anxiety, impairments in social behavior, and decreased cognitive performance. These observed behavioral changes are though to be due to alterations in the development of neural circuitry critical in behavioral regulation such as the serotonin, dopamine, and melanocortin systems and increased activity of the hypothalamic–pituitary axis. Mechanisms for these developmental changes include alternations in maternal behavior due to HFD consumption and the increased levels of inflammatory factors, nutrients and hormones that are associated with maternal obesity. Given the high levels of maternal obesity and HFD consumption in developed nations, we postulate that future generations are at increased risk for obesity and metabolic, neurodevelopmental, and mental health disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM (2012) Prevalence of obesity in the United States, 2009-2010. NCHS Data Brief 82:1–8

    Google Scholar 

  2. Hedderson M, Ehrlich S, Sridhar S, Darbinian J, Moore S, Ferrara A (2012) Racial/ethnic disparities in the prevalence of gestational diabetes mellitus by BMI. Diabetes Care 35(7):1492–1498

    Article  PubMed  PubMed Central  Google Scholar 

  3. Solomon CG, Willett WC, Carey VJ, Rich-Edwards J, Hunter DJ, Colditz GA et al (1997) A prospective study of pregravid determinants of gestational diabetes mellitus. JAMA 278(13):1078–1083

    Article  CAS  PubMed  Google Scholar 

  4. Baeten JM, Bukusi EA, Lambe M (2001) Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health 91(3):436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bodnar LM, Ness RB, Markovic N, Roberts JM (2005) The risk of preeclampsia rises with increasing prepregnancy body mass index. Ann Epidemiol 15(7):475–482

    Article  PubMed  Google Scholar 

  6. Magriples U, Boynton MH, Kershaw TS, Duffany KO, Rising SS, Ickovics JR (2013) Blood pressure changes during pregnancy: impact of race, body mass index, and weight gain. Am J Perinatol 30(5):415–424

    PubMed  Google Scholar 

  7. Higgins L, Mills TA, Greenwood SL, Cowley EJ, Sibley CP, Jones RL (2013) Maternal obesity and its effect on placental cell turnover. J Mater Fetal Neonatal Med 26(8):783–788

    Article  Google Scholar 

  8. Hastie R, Lappas M (2014) The effect of pre-existing maternal obesity and diabetes on placental mitochondrial content and electron transport chain activity. Placenta 35(9):673–683

    Article  CAS  PubMed  Google Scholar 

  9. Cnattingius S, Villamor E, Johansson S, Edstedt Bonamy AK, Persson M, Wikstrom AK et al (2013) Maternal obesity and risk of preterm delivery. JAMA 309(22):2362–2370

    Article  CAS  PubMed  Google Scholar 

  10. Wang T, Zhang J, Lu X, Xi W, Li Z (2011) Maternal early pregnancy body mass index and risk of preterm birth. Arch Gynecol Obstet 284(4):813–819

    Article  PubMed  Google Scholar 

  11. Djelantik AA, Kunst AE, van der Wal MF, Smit HA, Vrijkotte TG (2012) Contribution of overweight and obesity to the occurrence of adverse pregnancy outcomes in a multi-ethnic cohort: population attributive fractions for Amsterdam. BJOG 119(3):283–290

    Article  CAS  PubMed  Google Scholar 

  12. Grove KL, Allen S, Grayson BE, Smith MS (2003) Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience 116(2):393–406

    Article  CAS  PubMed  Google Scholar 

  13. Grove KL, Smith MS (2003) Ontogeny of the hypothalamic neuropeptide Y system. Physiol Behav 79(1):47–63

    Article  CAS  PubMed  Google Scholar 

  14. Grayson BE, Allen SE, Billes SK, Williams SM, Smith MS, Grove KL (2006) Prenatal development of hypothalamic neuropeptide systems in the nonhuman primate. Neuroscience 143(4):975–986

    Article  CAS  PubMed  Google Scholar 

  15. Koutcherov Y, Mai JK, Paxinos G (2003) Hypothalamus of the human fetus. J Chem Neuroanat 26(4):253–270

    Article  CAS  PubMed  Google Scholar 

  16. Harwood HJ Jr, Listrani P, Wagner JD (2012) Nonhuman primates and other animal models in diabetes research. J Diabetes Sci Technol 6(3):503–514

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li S, Kievit P, Robertson AK, Kolumam G, Li X, von Wachenfeldt K et al (2013) Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol Metab 2(3):256–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansen BC (1989) Pathophysiology of obesity-associated type II diabetes (NIDDM): implications from longitudinal studies of non-human primates. Nutrition 5(1):48–50

    CAS  PubMed  Google Scholar 

  19. Kievit P, Halem H, Marks DL, Dong JZ, Glavas MM, Sinnayah P et al (2013) Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 62(2):490–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pound LD, Kievit P, Grove KL (2014) The nonhuman primate as a model for type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 21(2):89–94

    Article  CAS  PubMed  Google Scholar 

  21. Oken E, Gillman MW (2003) Fetal origins of obesity. Obes Res 11(4):496–506

    Article  PubMed  Google Scholar 

  22. Tanne JH (2012) Maternal obesity and diabetes are linked to children’s autism and similar disorders. BMJ 344:e2768

    Article  PubMed  Google Scholar 

  23. Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL et al (2012) Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 129(5):e1121–e1128

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sullivan EL, Nousen EK, Chamlou KA (2014) Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav 123:236–242. doi:10.1016/j.physbeh.2012.07.014, Epub 2012 Oct 17

    Article  CAS  PubMed  Google Scholar 

  25. Ray GT, Croen LA, Habel LA (2009) Mothers of children diagnosed with attention-deficit/hyperactivity disorder: health conditions and medical care utilization in periods before and after birth of the child. Med Care 47(1):105–114

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez A (2010) Maternal pre-pregnancy obesity and risk for inattention and negative emotionality in children. J Child Psychol Psychiatry 51(2):134–143

    Article  PubMed  Google Scholar 

  27. Dodds L, Fell DB, Shea S, Armson BA, Allen AC, Bryson S (2011) The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord 41(7):891–902

    Article  PubMed  Google Scholar 

  28. Ashwood P, Kwong C, Hansen R, Hertz-Picciotto I, Croen L, Krakowiak P et al (2008) Brief report: plasma leptin levels are elevated in autism: association with early onset phenotype? J Autism Dev Disord 38(1):169–175

    Article  PubMed  Google Scholar 

  29. Hinkle SN, Schieve LA, Stein AD, Swan DW, Ramakrishnan U, Sharma AJ (2012) Associations between maternal prepregnancy body mass index and child neurodevelopment at 2 years of age. Int J Obes (Lond) 36(10):1312–1319

    Article  CAS  Google Scholar 

  30. Hodson K, Man CD, Smith FE, Thelwall PE, Cobelli C, Robson SC et al (2013) Mechanism of insulin resistance in normal pregnancy. Horm Metab Res 45(8):567–571

    Article  CAS  PubMed  Google Scholar 

  31. Catalano PM, Huston L, Amini SB, Kalhan SC (1999) Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am J Obstet Gynecol 180(4):903–916

    Article  CAS  PubMed  Google Scholar 

  32. Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE (2007) Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care 30(Suppl 2):S112–S119

    Article  CAS  PubMed  Google Scholar 

  33. Fahraeus L, Larsson-Cohn U, Wallentin L (1985) Plasma lipoproteins including high density lipoprotein subfractions during normal pregnancy. Obstet Gynecol 66(4):468–472

    CAS  PubMed  Google Scholar 

  34. Ramsay JE, Ferrell WR, Crawford L, Wallace AM, Greer IA, Sattar N (2002) Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J Clin Endocrinol Metab 87(9):4231–4237

    Article  CAS  PubMed  Google Scholar 

  35. Jarvie E, Hauguel-de-Mouzon S, Nelson SM, Sattar N, Catalano PM, Freeman DJ (2010) Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in the offspring. Clin Sci (Lond) 119(3):123–129

    Article  CAS  Google Scholar 

  36. Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H et al (1997) Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med 3(9):1029–1033

    Article  CAS  PubMed  Google Scholar 

  37. Johnstone LE, Higuchi T (2001) Food intake and leptin during pregnancy and lactation. Prog Brain Res 133:215–227

    Article  CAS  PubMed  Google Scholar 

  38. Valleau JC, Sullivan EL (2014) The impact of leptin on perinatal development and psychopathology. J Chem Neuroanat 61–62:221–232

    Article  PubMed  CAS  Google Scholar 

  39. Heslehurst N, Simpson H, Ells LJ, Rankin J, Wilkinson J, Lang R et al (2008) The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: a meta-analysis. Obes Rev 9(6):635–683

    Article  CAS  PubMed  Google Scholar 

  40. Das UN (2001) Is obesity an inflammatory condition? Nutrition 17(11–12):953–966

    Article  CAS  PubMed  Google Scholar 

  41. Basu S, Haghiac M, Surace P, Challier JC, Guerre-Millo M, Singh K et al (2011) Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obesity (Silver Spring) 19(3):476–482

    Article  CAS  Google Scholar 

  42. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM et al (2008) Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 29(3):274–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roberts KA, Riley SC, Reynolds RM, Barr S, Evans M, Statham A et al (2011) Placental structure and inflammation in pregnancies associated with obesity. Placenta 32(3):247–254

    Article  CAS  PubMed  Google Scholar 

  44. Stewart FM, Freeman DJ, Ramsay JE, Greer IA, Caslake M, Ferrell WR (2007) Longitudinal assessment of maternal endothelial function and markers of inflammation and placental function throughout pregnancy in lean and obese mothers. J Clin Endocrinol Metab 92(3):969–975

    Article  CAS  PubMed  Google Scholar 

  45. Park CW, Moon KC, Park JS, Jun JK, Yoon BH (2009) The frequency and clinical significance of intra-uterine infection and inflammation in patients with placenta previa and preterm labor and intact membranes. Placenta 30(7):613–618

    Article  CAS  PubMed  Google Scholar 

  46. Aimukhametova G, Ukybasova T, Hamidullina Z, Zhubanysheva K, Harun-Or-Rashid M, Yoshida Y et al (2012) The impact of maternal obesity on mother and neonatal health: study in a tertiary hospital of Astana, Kazakhstan. Nagoya J Med Sci 74(1-2):83–92

    PubMed  PubMed Central  Google Scholar 

  47. Zhu MJ, Du M, Nathanielsz PW, Ford SP (2010) Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta 31(5):387–391

    Article  CAS  PubMed  Google Scholar 

  48. Wallace JM, Milne JS, Matsuzaki M, Aitken RP (2008) Serial measurement of uterine blood flow from mid to late gestation in growth restricted pregnancies induced by overnourishing adolescent sheep dams. Placenta 29(8):718–724

    Article  CAS  PubMed  Google Scholar 

  49. Taylor PD, Khan IY, Lakasing L, Dekou V, O'Brien-Coker I, Mallet AI et al (2003) Uterine artery function in pregnant rats fed a diet supplemented with animal lard. Exp Physiol 88(3):389–398

    Article  CAS  PubMed  Google Scholar 

  50. Frias AE, Morgan TK, Evans AE, Rasanen J, Oh KY, Thornburg KL et al (2011) Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 152(6):2456–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilmore JH, Jarskog LF, Vadlamudi S (2005) Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol 159(1–2):106–112

    Article  CAS  PubMed  Google Scholar 

  52. Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH (2001) Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 47(1):27–36

    Article  CAS  PubMed  Google Scholar 

  53. Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Caldji C, Hellstrom IC, Zhang TY, Diorio J, Meaney MJ (2011) Environmental regulation of the neural epigenome. FEBS Lett 585(13):2049–2058

    Article  CAS  PubMed  Google Scholar 

  55. Parent CI, Meaney MJ (2008) The influence of natural variations in maternal care on play fighting in the rat. Dev Psychobiol 50(8):767–776

    Article  PubMed  Google Scholar 

  56. Walker CD (2010) Maternal touch and feed as critical regulators of behavioral and stress responses in the offspring. Dev Psychobiol 52(7):638–650

    Article  PubMed  Google Scholar 

  57. Weaver IC, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci USA 103(9):3480–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Connor KL, Vickers MH, Beltrand J, Meaney MJ, Sloboda DM (2012) Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function. J Physiol 590(Pt 9):2167–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bertino M (1982) Effects of high fat, protein supplemented diets on maternal behavior in rats. Physiol Behav 29(6):999–1005

    Article  CAS  PubMed  Google Scholar 

  60. Purcell RH, Sun B, Pass LL, Power ML, Moran TH, Tamashiro KL (2011) Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior. Physiol Behav 104(3):474–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Glavas MM, Kirigiti MA, Xiao XQ, Enriori PJ, Fisher SK, Evans AE et al (2010) Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology 151(4):1598–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maestripieri D, McCormack K, Lindell SG, Higley JD, Sanchez MM (2006) Influence of parenting style on the offspring's behaviour and CSF monoamine metabolite levels in crossfostered and noncrossfostered female rhesus macaques. Behav Brain Res 175(1):90–95

    Article  CAS  PubMed  Google Scholar 

  63. Schino G, Troisi A (2001) Relationship with the mother modulates the response of yearling Japanese macaques (Macaca fuscata) to the birth of a sibling. J Comp Psychol 115(4):392–396

    Article  CAS  PubMed  Google Scholar 

  64. Schino G, Speranza L, Troisi A (2001) Early maternal rejection and later social anxiety in juvenile and adult Japanese macaques. Dev Psychobiol 38(3):186–190

    Article  CAS  PubMed  Google Scholar 

  65. Sabatini MJ, Ebert P, Lewis DA, Levitt P, Cameron JL, Mirnics K (2007) Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. J Neurosci 27(12):3295–3304

    Article  CAS  PubMed  Google Scholar 

  66. Verbeek T, Bockting CL, van Pampus MG, Ormel J, Meijer JL, Hartman CA et al (2012) Postpartum depression predicts offspring mental health problems in adolescence independently of parental lifetime psychopathology. J Affect Disord 136(3):948–954

    Article  PubMed  Google Scholar 

  67. Gershon A, Hayward C, Schraedley-Desmond P, Rudolph KD, Booster GD, Gotlib IH (2011) Life stress and first onset of psychiatric disorders in daughters of depressed mothers. J Psychiatr Res 45(7):855–862

    Article  PubMed  PubMed Central  Google Scholar 

  68. Okubo H, Miyake Y, Sasaki S, Tanaka K, Murakami K, Hirota Y (2011) Dietary patterns during pregnancy and the risk of postpartum depression in Japan: the Osaka Maternal and Child Health Study. Br J Nutr 105(8):1251–1257

    Article  PubMed  Google Scholar 

  69. Rising R, Lifshitz F (2005) Relationship between maternal obesity and infant feeding-interactions. Nutr J 4:17

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mehta UJ, Siega-Riz AM, Herring AH, Adair LS, Bentley ME (2012) Pregravid body mass index is associated with early introduction of complementary foods. J Acad Nutr Diet 112(9):1374–1379

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sewell MF, Huston-Presley L, Super DM, Catalano P (2006) Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 195(4):1100–1103

    Article  PubMed  Google Scholar 

  72. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE et al (2009) Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 119(2):323–335

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rivera HM, Kievit P, Kirigiti MA, Bauman LA, Baquero K, Blundell P et al (2015) Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring. Obesity (Silver Spring) 23(11):2157–2164

    Article  CAS  PubMed Central  Google Scholar 

  74. Guo F, Jen KL (1995) High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 57(4):681–686

    Article  CAS  PubMed  Google Scholar 

  75. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51(2):383–392

    Article  CAS  PubMed  Google Scholar 

  76. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF (2008) Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 28(46):12107–12119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walker CD, Naef L, d’Asti E, Long H, Xu Z, Moreau A et al (2008) Perinatal maternal fat intake affects metabolism and hippocampal function in the offspring: a potential role for leptin. Ann NY Acad Sci 1144:189–202

    Article  PubMed  Google Scholar 

  78. Sullivan EL, Grove KL (2010) Metabolic imprinting in obesity. Forum Nutr 63:186–194

    Article  CAS  PubMed  Google Scholar 

  79. Grove KL, Grayson BE, Glavas MM, Xiao XQ, Smith MS (2005) Development of metabolic systems. Physiol Behav 86(5):646–660

    Article  CAS  PubMed  Google Scholar 

  80. Sullivan EL, Rivera HM, Franco JG, Baquero K, Dean T, Valleau JC, Takahashi D, Frazee T, Hanna G, Kirigitti M, Bauman, Kievit P. Maternal and postnatal high-fat diet consumption programs energy balance and hypothalamic melanocortin signaling in nonhuman primate offspring. Am J Physiol Endocrinol Metab (under review)

    Google Scholar 

  81. Kang SS, Kurti A, Fair DA, Fryer JD (2014) Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring. J Neuroinflammation 11(1):156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Naef L, Srivastava L, Gratton A, Hendrickson H, Owens SM, Walker CD (2008) Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration. Psychopharmacology (Berl) 197(1):83–94

    Article  CAS  Google Scholar 

  83. Fisher JO, Birch LL (1995) Fat preferences and fat consumption of 3- to 5-year-old children are related to parental adiposity. J Am Diet Assoc 95(7):759–764

    Article  CAS  PubMed  Google Scholar 

  84. Eck LH, Klesges RC, Hanson CL, Slawson D (1992) Children at familial risk for obesity: an examination of dietary intake, physical activity and weight status. Int J Obes Relat Metab Disord 16(2):71–78

    CAS  PubMed  Google Scholar 

  85. Bayol SA, Farrington SJ, Stickland NC (2007) A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr 98(4):843–851

    Article  CAS  PubMed  Google Scholar 

  86. Nakashima Y (2008) Fish-oil high-fat diet intake of dams after day 5 of pregnancy and during lactation guards against excessive fat consumption of their weaning pups. J Nutr Sci Vitaminol (Tokyo) 54(1):46–53

    Article  CAS  Google Scholar 

  87. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303(6809):1019–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Rooij SR, Painter RC, Phillips DI, Osmond C, Michels RP, Godsland IF et al (2006) Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care 29(8):1897–1901

    Article  PubMed  Google Scholar 

  89. de Rooij SR, Painter RC, Roseboom TJ, Phillips DI, Osmond C, Barker DJ et al (2006) Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia 49(4):637–643

    Article  CAS  PubMed  Google Scholar 

  90. Centers for Disease Control and Prevention (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States. US Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  91. Kerr GR, Allen JR, Scheffler G, Couture J (1974) Fetal and postnatal growth of rhesus monkeys (M. mulatta). J Med Primatol 3(4):221–235

    CAS  PubMed  Google Scholar 

  92. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103(7):2334–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M (2009) Islet architecture: a comparative study. Islets 1(2):129–136

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO et al (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14(1):45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grant WF, Gillingham MB, Batra AK, Fewkes NM, Comstock SM, Takahashi D et al (2011) Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PLoS One 6(2):e17261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fan L, Lindsley SR, Comstock SM, Takahashi DL, Evans AE, He GW et al (2013) Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes (Lond) 37(2):254–262

    Article  CAS  Google Scholar 

  97. Comstock SM, Pound LD, Bishop JM, Takahashi DL, Kostrba AM, Smith MS et al (2012) High-fat diet consumption during pregnancy and the early post-natal period leads to decreased alpha cell plasticity in the nonhuman primate. Mol Metab 2(1):10–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Pound LD, Comstock SM, Grove KL (2014) Consumption of a Western-style diet during pregnancy impairs offspring islet vascularization in a Japanese macaque model. Am J Physiol Endocrinol Metab 307(1):E115–E123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eckel RH, Krauss RM (1998) American Heart Association call to action: obesity as a major risk factor for coronary heart disease. AHA Nutrition Committee. Circulation 97(21):2099–2100

    Article  CAS  PubMed  Google Scholar 

  100. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292

    Article  PubMed  Google Scholar 

  101. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298(6673):564–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Barker DJ, Osmond C, Law CM (1989) The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health 43(3):237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2(8663):577–580

    Article  CAS  PubMed  Google Scholar 

  104. Langley-Evans SC, Phillips GJ, Jackson AA (1994) In utero exposure to maternal low protein diets induces hypertension in weanling rats, independently of maternal blood pressure changes. Clin Nutr 13(5):319–324

    Article  CAS  PubMed  Google Scholar 

  105. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG (2010) Beyond birthweight: the maternal and placental origins of chronic disease. J Dev Orig Health Dis 1(6):360–364

    Article  CAS  PubMed  Google Scholar 

  106. Eriksson JG (2011) Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am J Clin Nutr 94(Suppl 6):1799S–1802S

    Article  CAS  PubMed  Google Scholar 

  107. Eriksson JG, Kajantie E, Thornburg KL, Osmond C, Barker DJ (2011) Mother’s body size and placental size predict coronary heart disease in men. Eur Heart J 32(18):2297–2303

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lawlor DA, Najman JM, Sterne J, Williams GM, Ebrahim S, Davey Smith G (2004) Associations of parental, birth, and early life characteristics with systolic blood pressure at 5 years of age: findings from the Mater-University study of pregnancy and its outcomes. Circulation 110(16):2417–2423

    Article  PubMed  Google Scholar 

  109. Lewis DS, Mott GE, McMahan CA, Masoro EJ, Carey KD, McGill HC Jr (1988) Deferred effects of preweaning diet on atherosclerosis in adolescent baboons. Arteriosclerosis 8(3):274–280

    Article  CAS  PubMed  Google Scholar 

  110. Lewis DS, Bertrand HA, McMahan CA, McGill HC Jr, Carey KD, Masoro EJ (1986) Preweaning food intake influences the adiposity of young adult baboons. J Clin Invest 78(4):899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maloyan A, Muralimanoharan S, Huffman S, Cox LA, Nathanielsz PW, Myatt L et al (2013) Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity. Physiol Genomics 45(19):889–900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Della Corte C, Alisi A, Saccari A, De Vito R, Vania A, Nobili V (2012) Nonalcoholic fatty liver in children and adolescents: an overview. J Adolesc Health 51(4):305–312

    Article  PubMed  Google Scholar 

  113. Alisi A, Manco M, Vania A, Nobili V (2009) Pediatric nonalcoholic fatty liver disease in 2009. J Pediatr 155(4):469–474

    Article  PubMed  Google Scholar 

  114. Brumbaugh DE, Tearse P, Cree-Green M, Fenton LZ, Brown M, Scherzinger A et al (2013) Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr 162(5):930–936, e1

    Article  CAS  PubMed  Google Scholar 

  115. Modi N, Murgasova D, Ruager-Martin R, Thomas EL, Hyde MJ, Gale C et al (2011) The influence of maternal body mass index on infant adiposity and hepatic lipid content. Pediatr Res 70(3):287–291

    Article  PubMed  Google Scholar 

  116. Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C et al (2010) Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol 52(6):913–920

    Article  CAS  PubMed  Google Scholar 

  117. George LA, Uthlaut AB, Long NM, Zhang L, Ma Y, Smith DT et al (2010) Different levels of overnutrition and weight gain during pregnancy have differential effects on fetal growth and organ development. Reprod Biol Endocrinol 8:75

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50(6):1796–1808

    Article  CAS  PubMed  Google Scholar 

  119. Bayol SA, Simbi BH, Fowkes RC, Stickland NC (2010) A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic fatty liver disease in rat offspring. Endocrinology 151(4):1451–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thorn SR, Baquero KC, Newsom SA, El Kasmi KC, Bergman BC, Shulman GI et al (2014) Early life exposure to maternal insulin resistance has persistent effects on hepatic NAFLD in juvenile nonhuman primates. Diabetes 63(8):2702–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sookoian S, Rosselli MS, Gemma C, Burgueno AL, Fernandez Gianotti T, Castano GO et al (2010) Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology 52(6):1992–2000

    Article  CAS  PubMed  Google Scholar 

  122. Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA et al (2014) In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model. Am J Obstet Gynecol 210(5):463.e1–463.e11

    Article  CAS  Google Scholar 

  123. Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH et al (2012) A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 26(12):5106–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Grant WF, Nicol LE, Thorn SR, Grove KL, Friedman JE, Marks DL (2012) Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques. PLoS One 7(10):e48119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rodriguez A, Miettunen J, Henriksen TB, Olsen J, Obel C, Taanila A et al (2008) Maternal adiposity prior to pregnancy is associated with ADHD symptoms in offspring: evidence from three prospective pregnancy cohorts. Int J Obes (Lond) 32(3):550–557

    Article  CAS  Google Scholar 

  126. Van Lieshout RJ, Robinson M, Boyle MH (2013) Maternal pre-pregnancy body mass index and internalizing and externalizing problems in offspring. Can J Psychiatry 58(3):151–159

    PubMed  Google Scholar 

  127. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcin C et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fombonne E, Quirke S, Hagen A (2011) Epidemiology of pervasive developmental disorders. In: Amaral DG, Geschwind DH (eds) Autism spectrum disorders. Oxford University Press, New York, pp 90–111

    Chapter  Google Scholar 

  129. Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M et al (2011) Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics 127(6):1034–1042

    Article  PubMed  Google Scholar 

  130. Ornoy A (2005) Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev 3(2):104–113

    PubMed  Google Scholar 

  131. Rizzo TA, Silverman BL, Metzger BE, Cho NH (1997) Behavioral adjustment in children of diabetic mothers. Acta Paediatr 86(9):969–974

    Article  CAS  PubMed  Google Scholar 

  132. Wallace AE, Anderson GM, Dubrow R (2008) Obstetric and parental psychiatric variables as potential predictors of autism severity. J Autism Dev Disord 38(8):1542–1554

    Article  PubMed  Google Scholar 

  133. Mann JR, McDermott S, Bao H, Hardin J, Gregg A (2010) Pre-eclampsia, birth weight, and autism spectrum disorders. J Autism Dev Disord 40(5):548–554

    Article  PubMed  Google Scholar 

  134. Glasson EJ, Bower C, Petterson B, de Klerk N, Chaney G, Hallmayer JF (2004) Perinatal factors and the development of autism: a population study. Arch Gen Psychiatry 61(6):618–627

    Article  PubMed  Google Scholar 

  135. Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL et al (2010) Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 30(10):3826–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bilbo SD, Tsang V (2010) Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J 24(6):2104–2115

    Article  CAS  PubMed  Google Scholar 

  137. Sullivan EL, Valleau JC, Franco J, Barling AN, Riper K. Perinatal exposure to a high fat diet alters behavior and the serotonergic system of nonhuman primate offspring. Nat Neurosci (in preparation)

    Google Scholar 

  138. Desai RA, Manley M, Desai MM, Potenza MN (2009) Gender differences in the association between body mass index and psychopathology. CNS Spectr 14(7):372–383

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gavard JA, Artal R (2014) The association of gestational weight gain with birth weight in obese pregnant women by obesity class and diabetic status: a population-based historical cohort study. Matern Child Health J 18(4):1038–1047

    Article  PubMed  Google Scholar 

  140. Nohr EA, Vaeth M, Baker JL, Sorensen T, Olsen J, Rasmussen KM (2008) Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr 87(6):1750–1759

    CAS  PubMed  Google Scholar 

  141. Colman I, Ataullahjan A, Naicker K, Van Lieshout RJ (2012) Birth weight, stress, and symptoms of depression in adolescence: evidence of fetal programming in a national Canadian cohort. Can J Psychiatry 57(7):422–428

    PubMed  Google Scholar 

  142. Herva A, Pouta A, Hakko H, Laksy K, Joukamaa M, Veijola J (2008) Birth measures and depression at age 31 years: the Northern Finland 1966 Birth Cohort Study. Psychiatry Res 160(3):263–270

    Article  PubMed  Google Scholar 

  143. Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, van Belle G et al (2006) Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 63(7):824–830

    Article  PubMed  PubMed Central  Google Scholar 

  144. Raygada M, Cho E, Hilakivi-Clarke L (1998) High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings’ aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity. J Nutr 128(12):2505–2511

    CAS  PubMed  Google Scholar 

  145. Eskelinen MH, Ngandu T, Helkala J, Tuomilehto A, Nissinen A, Soininen H et al (2008) Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry 23(7):741–747

    Article  PubMed  Google Scholar 

  146. Pasinetti GM, Eberstein JA (2008) Metabolic syndrome and the role of dietary lifestyles in Alzheimer’s disease. J Neurochem 106(4):1503–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kanoski SE, Davidson TL (2011) Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav 103(1):59–68

    Article  CAS  PubMed  Google Scholar 

  148. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112(4):803–814

    Article  CAS  PubMed  Google Scholar 

  149. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM et al (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18(11):1085–1088

    Article  PubMed  PubMed Central  Google Scholar 

  150. Xia SF, Xie ZX, Qiao Y, Li LR, Cheng XR, Tang X et al (2015) Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. Physiol Behav 138:325–331

    Article  CAS  PubMed  Google Scholar 

  151. Kishi T, Hirooka Y, Nagayama T, Isegawa K, Katsuki M, Takesue K et al (2015) Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor: tropomyosin-related kinase B in hippocampus of obesity-induced hypertensive rats. Int Heart J 56(1):110–115

    Article  PubMed  Google Scholar 

  152. Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S et al (2014) Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 267:178–188

    Article  CAS  PubMed  Google Scholar 

  153. Pathan AR, Gaikwad AB, Viswanad B, Ramarao P (2008) Rosiglitazone attenuates the cognitive deficits induced by high fat diet feeding in rats. Eur J Pharmacol 589(1–3):176–179

    Article  CAS  PubMed  Google Scholar 

  154. Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci 91(11–12):409–414

    Article  CAS  PubMed  Google Scholar 

  155. Pipatpiboon N, Pintana H, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2013) DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur J Neurosci 37(5):839–849

    Article  PubMed  Google Scholar 

  156. Page KC, Jones EK, Anday EK (2014) Maternal and postweaning high-fat diets disturb hippocampal gene expression, learning, and memory function. Am J Physiol Regul Integr Comp Physiol 306(8):R527–R537

    Article  CAS  PubMed  Google Scholar 

  157. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF et al (2011) Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IkappaB kinase beta/nuclear factor-kappaB-mediated inflammatory pathways in mice. Brain Behav Immun 25(8):1658–1667

    Article  CAS  PubMed  Google Scholar 

  158. Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K (2010) Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int 57(3):235–247

    Article  CAS  PubMed  Google Scholar 

  159. White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim SO, Hise TL et al (2009) Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis 35(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cone RD (1999) The central melanocortin system and energy homeostasis. Trends Endocrinol Metab 10(6):211–216

    Article  CAS  PubMed  Google Scholar 

  161. Lim J, Burke S, Head GA (2015) 7a.06: Maternal obesity and the developmental programming of hypertension: altered leptin signalling pathway in the central nervous system. J Hypertens 33(Suppl 1):e90

    Article  PubMed  Google Scholar 

  162. da Silva AA, do Carmo JM, Wang Z, Hall JE (2014) The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology (Bethesda) 29(3):196–202

    Google Scholar 

  163. Martin WJ, MacIntyre DE (2004) Melanocortin receptors and erectile function. Eur Urol 45(6):706–713

    Article  CAS  PubMed  Google Scholar 

  164. Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27(7):736–749

    Article  CAS  PubMed  Google Scholar 

  165. Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL (2010) Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology 151(4):1622–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gupta A, Srinivasan M, Thamadilok S, Patel MS (2009) Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol 200(3):293–300

    Article  CAS  PubMed  Google Scholar 

  167. Sun B, Song L, Tamashiro KL, Moran TH, Yan J (2014) Large litter rearing improves leptin sensitivity and hypothalamic appetite markers in offspring of rat dams fed high-fat diet during pregnancy and lactation. Endocrinology 155(9):3421–3433

    Article  PubMed  CAS  Google Scholar 

  168. Scarlett JM, Jobst EE, Enriori PJ, Bowe DD, Batra AK, Grant WF et al (2007) Regulation of central melanocortin signaling by interleukin-1 beta. Endocrinology 148(9):4217–4225

    Article  CAS  PubMed  Google Scholar 

  169. Scarlett JM, Zhu X, Enriori PJ, Bowe DD, Batra AK, Levasseur PR et al (2008) Regulation of agouti-related protein messenger ribonucleic acid transcription and peptide secretion by acute and chronic inflammation. Endocrinology 149(10):4837–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kannan S, Saadani-Makki F, Balakrishnan B, Dai H, Chakraborty PK, Janisse J et al (2011) Decreased cortical serotonin in neonatal rabbits exposed to endotoxin in utero. J Cereb Blood Flow Metab 31(2):738–749

    Article  CAS  PubMed  Google Scholar 

  171. Daws LC, Gould GG (2011) Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther 131(1):61–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kiyohara C, Yoshimasu K (2009) Molecular epidemiology of major depressive disorder. Environ Health Prev Med 14(2):71–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sullivan GM, Mann JJ, Oquendo MA, Lo ES, Cooper TB, Gorman JM (2006) Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. Biol Psychiatry 60(5):500–506

    Article  CAS  PubMed  Google Scholar 

  174. Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJ, Banaschewski T et al (2008) The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): findings from a family-based association test (FBAT) analysis. Behav Brain Funct 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  175. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J et al (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45(3):287–295

    Article  CAS  PubMed  Google Scholar 

  176. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–1193

    Article  CAS  PubMed  Google Scholar 

  177. Peleg-Raibstein D, Luca E, Wolfrum C (2012) Maternal high-fat diet in mice programs emotional behavior in adulthood. Behav Brain Res 233(2):398–404

    Article  CAS  PubMed  Google Scholar 

  178. Leung P, Bryant RA (2000) Autobiographical memory in diabetes mellitus patients. J Psychosom Res 49(6):435–438

    Article  CAS  PubMed  Google Scholar 

  179. Nordahl CW, Simon TJ, Zierhut C, Solomon M, Rogers SJ, Amaral DG (2008) Brief report: methods for acquiring structural MRI data in very young children with autism without the use of sedation. J Autism Dev Disord 38(8):1581–1590

    Article  PubMed  Google Scholar 

  180. Ishikawa J, Ishikawa A, Nakamura S (2007) Interferon-alpha reduces the density of monoaminergic axons in the rat brain. Neuroreport 18(2):137–140

    Article  CAS  PubMed  Google Scholar 

  181. Hamilton PJ, Shekar A, Belovich AN, Christianson NB, Campbell NG, Sutcliffe JS et al (2015) Zn(2+) reverses functional deficits in a de novo dopamine transporter variant associated with autism spectrum disorder. Mol Autism 6:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Bowton E, Saunders C, Reddy IA, Campbell NG, Hamilton PJ, Henry LK et al (2014) SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl Psychiatry 4:e464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Staal WG (2015) Autism, DRD3 and repetitive and stereotyped behavior, an overview of the current knowledge. Eur Neuropsychopharmacol 25(9):1421–1426. doi:10.1016/j.euroneuro.2014.08.011, Epub 2014 Sep 1

    Article  CAS  PubMed  Google Scholar 

  184. Tong JH, Cummins TD, Johnson BP, McKinley LA, Pickering HE, Fanning P et al (2015) An association between a dopamine transporter gene (SLC6A3) haplotype and ADHD symptom measures in nonclinical adults. Am J Med Genet B Neuropsychiatr Genet 168(2):89–96

    Article  CAS  Google Scholar 

  185. Pan YQ, Qiao L, Xue XD, Fu JH (2015) Association between ANKK1 (rs1800497) polymorphism of DRD2 gene and attention deficit hyperactivity disorder: a meta-analysis. Neurosci Lett 590:101–105

    Article  CAS  PubMed  Google Scholar 

  186. Hasler R, Salzmann A, Bolzan T, Zimmermann J, Baud P, Giannakopoulos P et al (2015) DAT1 and DRD4 genes involved in key dimensions of adult ADHD. Neurol Sci 36:861–869

    Article  CAS  PubMed  Google Scholar 

  187. Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R et al (2015) Deficits in prefrontal cortical and extrastriatal dopamine release in Schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry 72:316–324

    Article  PubMed  PubMed Central  Google Scholar 

  188. Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29(2):97–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Sumiyoshi T, Kunugi H, Nakagome K (2014) Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front Neurosci 8:395

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lee LT, Tsai HC, Chi MH, Chang WH, Chen KC, Lee IH et al (2015) Lower availability of striatal dopamine transporter in generalized anxiety disorder: a preliminary two-ligand SPECT study. Int Clin Psychopharmacol 30:175–178

    Article  PubMed  Google Scholar 

  191. Agius M, Verdolini N, Aquilina FF, Butler S (2014) Co-morbidity Part 2—Neurobiology and suicide risk; modelling the consequences of bipolar and anxiety co-morbidity. Psychiatr Danub 26(Suppl 1):336–339

    PubMed  Google Scholar 

  192. Clausius N, Born C, Grunze H (2009) The relevance of dopamine agonists in the treatment of depression. Neuropsychiatrie 23(1):15–25

    PubMed  Google Scholar 

  193. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337

    Article  CAS  PubMed  Google Scholar 

  194. Naef L, Gratton A, Walker CD (2013) Exposure to high fat during early development impairs adaptations in dopamine and neuroendocrine responses to repeated stress. Stress 16(5):540–548

    Article  CAS  PubMed  Google Scholar 

  195. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM (2010) Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151(10):4756–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Aguilar-Valles A, Jung S, Poole S, Flores C, Luheshi GN (2012) Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation. Psychoneuroendocrinology 37(7):956–969

    Article  CAS  PubMed  Google Scholar 

  197. Sage D, Maurel D, Bosler O (2001) Involvement of the suprachiasmatic nucleus in diurnal ACTH and corticosterone responsiveness to stress. Am J Physiol Endocrinol Metab 280(2):E260–E269

    CAS  PubMed  Google Scholar 

  198. Schulkin J, Gold PW, McEwen BS (1998) Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 23(3):219–243

    Article  CAS  PubMed  Google Scholar 

  199. Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73(2):114–126

    Article  PubMed  Google Scholar 

  200. D'Asti E, Long H, Tremblay-Mercier J, Grajzer M, Cunnane SC, Di Marzo V et al (2010) Maternal dietary fat determines metabolic profile and the magnitude of endocannabinoid inhibition of the stress response in neonatal rat offspring. Endocrinology 151(4):1685–1694

    Article  PubMed  CAS  Google Scholar 

  201. Sasaki A, de Vega WC, St-Cyr S, Pan P, McGowan PO (2013) Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 240:1–12

    Article  CAS  PubMed  Google Scholar 

  202. Blackmore ER, Moynihan JA, Rubinow DR, Pressman EK, Gilchrist M, O’Connor TG (2011) Psychiatric symptoms and proinflammatory cytokines in pregnancy. Psychosom Med 73(8):656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Donev R, Thome J (2010) Inflammation: good or bad for ADHD? Atten Defic Hyperact Disord 2(4):257–266

    Article  PubMed  Google Scholar 

  204. Angelidou A, Asadi S, Alysandratos K-D, Karagkouni A, Kourembanas S, Theoharides T (2012) Perinatal stress, brain inflammation and risk of autism-review and proposal. BMC Pediatr 12(1):89

    Article  PubMed  PubMed Central  Google Scholar 

  205. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Wagner RL, Yolken RH (2001) Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav Immun 15(4):411–420

    Article  CAS  PubMed  Google Scholar 

  206. Jarskog LF, Xiao H, Wilkie MB, Lauder JM, Gilmore JH (1997) Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 15(6):711–716

    Article  CAS  PubMed  Google Scholar 

  207. D’Alessandro ME, Oliva ME, Ferreira MR, Selenscig D, Lombardo YB, Chicco A (2012) Sucrose-rich feeding during rat pregnancy-lactation and/or after weaning alters glucose and lipid metabolism in adult offspring. Clin Exp Pharmacol Physiol 39(7):623–629

    Article  PubMed  CAS  Google Scholar 

  208. D’Alessandro ME, Oliva ME, Fortino MA, Chicco A (2014) Maternal sucrose-rich diet and fetal programming: changes in hepatic lipogenic and oxidative enzymes and glucose homeostasis in adult offspring. Food Funct 5(3):446–453

    Article  PubMed  CAS  Google Scholar 

  209. Wu C, Li J, Bo L, Gao Q, Zhu Z, Li D et al (2014) High-sucrose diets in pregnancy alter angiotensin II-mediated pressor response and microvessel tone via the PKC/Cav1.2 pathway in rat offspring. Hypertens Res 37(9):818–823

    Article  CAS  PubMed  Google Scholar 

  210. Pettitt DJ, McKenna S, McLaughlin C, Patterson CC, Hadden DR, McCance DR (2010) Maternal glucose at 28 weeks of gestation is not associated with obesity in 2-year-old offspring: the Belfast Hyperglycemia and Adverse Pregnancy Outcome (HAPO) family study. Diabetes Care 33(6):1219–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yajnik CS (2010) Fetal programming of diabetes: still so much to learn! Diabetes Care 33(5):1146–1148

    Article  PubMed  PubMed Central  Google Scholar 

  212. Agoudemos M, Reinking BE, Koppenhafer SL, Segar JL, Scholz TD (2011) Programming of adult cardiovascular disease following exposure to late-gestation hyperglycemia. Neonatology 100(2):198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Group HSCR (2009) Hyperglycemia and adverse pregnancy outcome (HAPO) study: associations with neonatal anthropometrics. Diabetes 58(2):453–459

    Article  CAS  Google Scholar 

  214. Thaware PK, McKenna S, Patterson CC, Hadden DR, Pettitt DJ, McCance DR (2015) Untreated mild hyperglycemia during pregnancy and anthropometric measures of obesity in offspring at age 5-7 years. Diabetes Care 38(9):1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kemnitz JW, Perelman RH, Engle MJ, Farrell PM (1985) An experimental model for studies of fetal maldevelopment in the diabetic pregnancy. Pediatr Pulmonol 1(Suppl 3):S79–S85

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elinor L. Sullivan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Sullivan, E.L., Kievit, P. (2016). The Implications of Maternal Obesity on Offspring Physiology and Behavior in the Nonhuman Primate. In: Green, L., Hester, R. (eds) Parental Obesity: Intergenerational Programming and Consequences. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6386-7_10

Download citation

Publish with us

Policies and ethics