Skip to main content

Discoidin Domain Receptors in Normal Mammary Development and Breast Cancer Progression

  • Chapter
  • First Online:
Discoidin Domain Receptors in Health and Disease

Abstract

The interaction of breast epithelial cells with the surrounding extracellular matrix (ECM) is known to play a pivotal role during normal mammary gland development and function. It is also critical during the pathological changes that lead to breast cancer initiation and progression. A bidirectional crosstalk emerges upon interactions of epithelial cells with the ECM, which eventually dictates the genotypic and phenotypic programs that define normal gland function. Consequently, disruption of this communication contributes to the development of malignant phenotypes, which illustrate the process of breast cancer progression. The Discoidin Domain Receptors (DDRs) are collagen-binding receptor tyrosine kinases that are emerging as key mediators of cell−collagen interactions in breast tissues. DDRs signal in response to both basement membrane and interstitial collagens and thus they are well positioned to activate matrix-induced cellular programs during normal mammary gland development and function, and during dissemination of breast cancer cells. This chapter summarizes the current knowledge on the expression and function of DDRs in breast epithelial cells and their potential involvement in physiological and malignant processes. We also discuss the current challenges in understanding DDR expression and function in breast cancer tissues and experimental models and their potential as therapeutic targets.

Rodrigo Fernandez-Valdivia and Rafael Fridman are cosenior authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu HL et al (2013) Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J Biol Chem 288(11):7430–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Inman JL et al (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142(6):1028–1042

    Article  CAS  PubMed  Google Scholar 

  3. Sternlicht MD (2006) Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 8(1):201

    Article  PubMed  CAS  Google Scholar 

  4. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast 22(Suppl 2):S66–S72

    Article  PubMed  Google Scholar 

  5. Muschler J, Streuli CH (2010) Cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol 2(10):a003202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Obr AE et al (2013) Progesterone receptor and Stat5 signaling cross talk through RANKL in mammary epithelial cells. Mol Endocrinol 27(11):1808–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez-Valdivia R, Lydon JP (2012) From the ranks of mammary progesterone mediators, RANKL takes the spotlight. Mol Cell Endocrinol 357(1-2):91–100

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez-Valdivia R et al (2005) Revealing progesterone’s role in uterine and mammary gland biology: insights from the mouse. Semin Reprod Med 23(1):22–37

    Article  CAS  PubMed  Google Scholar 

  9. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakakura T, Suzuki Y, Shiurba R (2013) Mammary stroma in development and carcinogenesis. J Mammary Gland Biol Neoplasia 18(2):189–197

    Article  PubMed  Google Scholar 

  11. Lambert AW, Ozturk S, Thiagalingam S (2012) Integrin signaling in mammary epithelial cells and breast cancer. ISRN Oncol 2012:493283

    PubMed  PubMed Central  Google Scholar 

  12. Schedin P, Keely PJ (2011) Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol 3(1):a003228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brownfield DG et al (2013) Patterned collagen fibers orient branching mammary epithelium through distinct signaling modules. Curr Biol 23(8):703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ingman WV et al (2006) Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn 235(12):3222–3229

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803(1):39–54

    Article  CAS  PubMed  Google Scholar 

  16. Faraci-Orf E, McFadden C, Vogel WF (2006) DDR1 signaling is essential to sustain Stat5 function during lactogenesis. J Cell Biochem 97(1):109–121

    Article  CAS  PubMed  Google Scholar 

  17. Vogel WF et al (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21(8):2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cellurale C et al (2012) Role of JNK in mammary gland development and breast cancer. Cancer Res 72(2):472–481

    Article  CAS  PubMed  Google Scholar 

  19. Crowley MR, Bowtell D, Serra R (2005) TGF-beta, c-Cbl, and PDGFR-alpha the in mammary stroma. Dev Biol 279(1):58–72

    Article  CAS  PubMed  Google Scholar 

  20. Joseph H et al (1999) Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 10(4):1221–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roarty K, Serra R (2007) Wnt5a is required for proper mammary gland development and TGF-beta-mediated inhibition of ductal growth. Development 134(21):3929–3939

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Valdivia R et al (2008) Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology 149(12):6236–6250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brisken C et al (1999) Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 210(1):96–106

    Article  CAS  PubMed  Google Scholar 

  24. Cui Y et al (2004) Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24(18):8037–8047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyoshi K et al (2001) Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 155(4):531–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mukherjee A et al (2010) Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J 24(11):4408–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santos SJ, Haslam SZ, Conrad SE (2010) Signal transducer and activator of transcription 5a mediates mammary ductal branching and proliferation in the nulliparous mouse. Endocrinology 151(6):2876–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fata JE et al (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103(1):41–50

    Article  CAS  PubMed  Google Scholar 

  29. Rayala SK et al (2006) Essential role of KIBRA in co-activator function of dynein light chain 1 in mammalian cells. J Biol Chem 281(28):19092–19099

    Article  CAS  PubMed  Google Scholar 

  30. Harris J et al (2006) Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 20(5):1177–1187

    Article  CAS  PubMed  Google Scholar 

  31. Hilton HN et al (2008) KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. Biochim Biophys Acta 1783(3):383–393

    Article  CAS  PubMed  Google Scholar 

  32. Chen J et al (2002) The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161(1):337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gardner H et al (1996) Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 175(2):301–313

    Article  CAS  PubMed  Google Scholar 

  34. Spike BT et al (2012) A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell 10(2):183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wansbury O et al (2011) Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment. Breast Cancer Res 13(4):R79

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bai L, Rohrschneider LR (2010) s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev 24(17):1882–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shackleton M et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88

    Article  CAS  PubMed  Google Scholar 

  38. Kano K et al (2008) A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol 22(8):1866–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Labrador JP et al (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2(5):446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cowling RT et al (2014) Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol 307(5):H773–H781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang K et al (2013) The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol 15(6):677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dontu G et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang S et al (2005) Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice. Genome Biol 6(10):R84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li Y et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100(26):15853–15858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosen PP (2009) Rosen’s breast pathology, 3rd edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, p 1116

    Google Scholar 

  46. Elledge RM et al (1998) HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study. Clin Cancer Res 4(1):7–12

    CAS  PubMed  Google Scholar 

  47. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618

    Article  CAS  PubMed  Google Scholar 

  48. Slamon D, Pegram M (2001) Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 28(1 Suppl 3):13–19

    Article  CAS  PubMed  Google Scholar 

  49. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  50. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  51. Burstein MD et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698

    Article  CAS  PubMed  Google Scholar 

  52. Maskarinec G et al (2013) Mammographic density as a predictor of breast cancer survival: the Multiethnic Cohort. Breast Cancer Res 15(1):R7

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tice JA et al (2013) Benign breast disease, mammographic breast density, and the risk of breast cancer. J Natl Cancer Inst 105(14):1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ursin G et al (2005) Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Res 7(5):R605–R608

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boyd NF et al (2001) Mammographic density as a marker of susceptibility to breast cancer: a hypothesis. IARC Sci Publ 154:163–169

    CAS  PubMed  Google Scholar 

  56. Martin LJ, Boyd NF (2008) Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res 10(1):201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  58. Provenzano PP, Eliceiri KW, Keely PJ (2009) Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol 19(11):638–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Valiathan RR et al (2012) Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 31(1-2):295–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vogel W et al (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1(1):13–23

    Article  CAS  PubMed  Google Scholar 

  62. Toy KA et al (2015) Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Res Treat 150(1):9–18

    Article  CAS  PubMed  Google Scholar 

  63. Yeh YC, Wang CZ, Tang MJ (2009) Discoidin domain receptor 1 activation suppresses alpha2beta1 integrin-dependent cell spreading through inhibition of Cdc42 activity. J Cell Physiol 218(1):146–156

    Article  CAS  PubMed  Google Scholar 

  64. Ren T et al (2013) Increased expression of discoidin domain receptor 2 (DDR2): a novel independent prognostic marker of worse outcome in breast cancer patients. Med Oncol 30(1):397

    Article  PubMed  CAS  Google Scholar 

  65. Dejmek J et al (2003) Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer 103(3):344–351

    Article  CAS  PubMed  Google Scholar 

  66. Turashvili G et al (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang CZ, Yeh YC, Tang MJ (2009) DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. Am J Physiol Cell Physiol 297(2):C419–C429

    Article  CAS  PubMed  Google Scholar 

  68. Eswaramoorthy R et al (2010) DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol 224(2):387–397

    Article  CAS  PubMed  Google Scholar 

  69. Hidalgo-Carcedo C et al (2011) Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13(1):49–58

    Article  CAS  PubMed  Google Scholar 

  70. Ameli F, Rose IM, Masir N (2015) Expression of DDR1 and DVL1 in invasive ductal and lobular breast carcinoma does not correlate with histological type, grade and hormone receptor status. Asian Pac J Cancer Prev 16(6):2385–2390

    Article  PubMed  Google Scholar 

  71. Ren T et al (2014) Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia. J Pathol 234(4):526–537

    Article  CAS  PubMed  Google Scholar 

  72. Koh M et al (2015) Discoidin domain receptor 1 is a novel transcriptional target of ZEB1 in breast epithelial cells undergoing H-Ras-induced epithelial to mesenchymal transition. Int J Cancer 136(6):E508–E520

    Article  CAS  PubMed  Google Scholar 

  73. Morikawa A et al (2015) Expression of beclin-1 in the microenvironment of invasive ductal carcinoma of the breast: correlation with prognosis and the cancer-stromal interaction. PLoS One 10(5):e0125762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lehmann BD et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Al-Ejeh F et al (2014) Kinome profiling reveals breast cancer heterogeneity and identifies targeted therapeutic opportunities for triple negative breast cancer. Oncotarget 5(10):3145–3158

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mayer IA et al (2014) New strategies for triple-negative breast cancer—deciphering the heterogeneity. Clin Cancer Res 20(4):782–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Duncan JS et al (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149(2):307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  79. Gentles AJ et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gyorffy B et al (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8(12):e82241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Jezequel P et al (2013) bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses. Database (Oxford) 2013:bas060

    Article  CAS  Google Scholar 

  82. Taube JH et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 107(35):15449–15454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39(17):e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Castro-Sanchez L et al (2011) Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells. Clin Exp Metastasis 28(5):463–477

    Article  CAS  PubMed  Google Scholar 

  85. Juin A et al (2014) Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway. J Cell Biol 207(4):517–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hansen C et al (2006) Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Exp Cell Res 312(20):4011–4018

    Article  CAS  PubMed  Google Scholar 

  87. Malaguarnera R et al (2015) Novel cross talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses. Oncotarget 6(18):16084–16105

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yeh YC et al (2011) DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell 22(7):940–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao M et al (2013) Discovery and optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-yl)ethynyl)benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors. J Med Chem 56(8):3281–3295

    Article  CAS  PubMed  Google Scholar 

  90. Kim HG et al (2013) Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor. ACS Chem Biol 8(10):2145–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. L’Hote CG, Thomas PH, Ganesan TS (2002) Functional analysis of discoidin domain receptor 1: effect of adhesion on DDR1 phosphorylation. FASEB J 16(2):234–236

    PubMed  Google Scholar 

  92. Marcotte R et al (2012) Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov 2(2):172–189

    Article  CAS  PubMed  Google Scholar 

  93. Schlabach MR et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319(5863):620–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Silva JM et al (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319(5863):617–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Assent D et al (2015) A membrane-type-1 matrix metalloproteinase (MT1-MMP)-discoidin domain receptor 1 axis regulates collagen-induced apoptosis in breast cancer cells. PLoS One 10(3):e0116006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Maquoi E et al (2012) MT1-MMP protects breast carcinoma cells against type I collagen-induced apoptosis. Oncogene 31(4):480–493

    Article  CAS  PubMed  Google Scholar 

  97. Fu HL et al (2013) Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem 288(17):12114–12129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Castro-Sanchez L et al (2010) Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. Eur J Cell Biol 89(11):843–852

    Article  CAS  PubMed  Google Scholar 

  99. Neuhaus B et al (2011) Migration inhibition of mammary epithelial cells by Syk is blocked in the presence of DDR1 receptors. Cell Mol Life Sci 68(22):3757–3770

    Article  CAS  PubMed  Google Scholar 

  100. Krisenko MO, Geahlen RL (2015) Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochim Biophys Acta 1853(1):254–263

    Article  CAS  PubMed  Google Scholar 

  101. Dejmek J et al (2005) Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res 11(2 Pt 1):520–528

    CAS  PubMed  Google Scholar 

  102. Paz H, Pathak N, Yang J (2014) Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene 33(33):4193–4202

    Article  CAS  PubMed  Google Scholar 

  103. Hansen C et al (2009) Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem 284(40):27533–27543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Safholm A et al (2006) A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 281(5):2740–2749

    Article  PubMed  CAS  Google Scholar 

  105. Jonsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 114(Pt 11):2043–2053

    CAS  PubMed  Google Scholar 

  106. Serra R et al (2011) Wnt5a as an effector of TGFbeta in mammary development and cancer. J Mammary Gland Biol Neoplasia 16(2):157–167

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jonsson M et al (2002) Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 62(2):409–416

    CAS  PubMed  Google Scholar 

  108. McDonald SL, Silver A (2009) The opposing roles of Wnt-5a in cancer. Br J Cancer 101(2):209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu N et al (2014) Challenging role of Wnt5a and its signaling pathway in cancer metastasis (Review). Exp Ther Med 8(1):3–8

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim ES, Kim MS, Moon A (2004) TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol 25(5):1375–1382

    CAS  PubMed  Google Scholar 

  111. Moleirinho S et al (2013) KIBRA exhibits MST-independent functional regulation of the Hippo signaling pathway in mammals. Oncogene 32(14):1821–1830

    Article  CAS  PubMed  Google Scholar 

  112. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280

    Article  CAS  PubMed  Google Scholar 

  113. Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290

    Article  CAS  PubMed  Google Scholar 

  114. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828

    Article  CAS  PubMed  Google Scholar 

  115. Dupont S (2015) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343(1):42–53

    Article  PubMed  CAS  Google Scholar 

  116. Dupont S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183

    Article  CAS  PubMed  Google Scholar 

  117. Ghosh S et al (2013) Regulation of adipose oestrogen output by mechanical stress. Nat Commun 4:1821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Corsa CAS et al (2016) The action of Discoidin Domain Receptor 2 in basal tumor cells and stromal cancer-associated fibroblasts is critical for breast cancer metastases. Cell Rep 15(11):2510–2523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Fridman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ekanayaka, S.A., Kleer, C.G., Bollig-Fischer, A., Fernandez-Valdivia, R., Fridman, R. (2016). Discoidin Domain Receptors in Normal Mammary Development and Breast Cancer Progression. In: Fridman, R., Huang, P. (eds) Discoidin Domain Receptors in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6383-6_7

Download citation

Publish with us

Policies and ethics