Skip to main content

Discoidin Domain Receptors and Disease

  • Chapter
  • First Online:
Book cover Discoidin Domain Receptors in Health and Disease

Abstract

The discoidin domain receptors have been implicated as contributing to normal developmental and pathologic conditions in humans. Mutations in the DDR genes have been described in a number of human diseases. Some of these are now being modeled in mice, which have afforded a better understanding for the cellular basis for the action of DDRs in various pathologic states. Herein, we first discuss the role(s) that DDR1 and DDR2 play in mouse development. Then we discuss pathologic conditions in humans where the action of DDRs has been associated with or correlated with pathologic and genomic analyses. Accumulated data indicate that the action of DDRs in various cell types have both cell-intrinsic roles as well as affecting the nature of the extracellular matrix produced or present in pathologic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel WF, Aszodi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faraci-Orf E, McFadden C, Vogel WF (2006) DDR1 signaling is essential to sustain Stat5 function during lactogenesis. J Cell Biochem 97:109–121

    Article  CAS  PubMed  Google Scholar 

  3. Gross O et al (2004) DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int 66:102–111

    Article  CAS  PubMed  Google Scholar 

  4. Meyer zum Gottesberge AM, Gross O, Becker-Lendzian U, Massing T, Vogel WF (2008) Inner ear defects and hearing loss in mice lacking the collagen receptor DDR1. Lab Invest 88:27–37

    Article  CAS  PubMed  Google Scholar 

  5. Labrador JP et al (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2:446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kano K et al (2008) A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol 22:1866–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bargal R et al (2009) Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am J Hum Genet 84:80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ali BR et al (2010) Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients. Hum Mol Genet 19:2239–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olaso E et al (2002) Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J Biol Chem 277:3606–3613

    Article  CAS  PubMed  Google Scholar 

  10. Kano K, Kitamura A, Matsuwaki T, Morimatsu M, Naito K (2010) Discoidin domain receptor 2 (DDR2) is required for maintenance of spermatogenesis in male mice. Mol Reprod Dev 77:29–37

    Article  CAS  PubMed  Google Scholar 

  11. Ferri N, Carragher NO, Raines EW (2004) Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol 164:1575–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hou G, Vogel W, Bendeck MP (2001) The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 107:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hou G, Vogel WF, Bendeck MP (2002) Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression. Circ Res 90:1147–1149

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad PJ et al (2009) Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization. Am J Pathol 175:2686–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Franco C et al (2008) Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circ Res 102:1202–1211

    Article  CAS  PubMed  Google Scholar 

  16. Franco C, Ahmad PJ, Hou G, Wong E, Bendeck MP (2010) Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Circ Res 106:1775–1783

    Article  CAS  PubMed  Google Scholar 

  17. Shyu KG, Wang BW, Chang H (2009) Hyperbaric oxygen activates discoidin domain receptor 2 via tumour necrosis factor-alpha and the p38 MAPK pathway to increase vascular smooth muscle cell migration through matrix metalloproteinase 2. Clin Sci 116:575–583

    Article  CAS  PubMed  Google Scholar 

  18. Hou G, Wang D, Bendeck MP (2012) Deletion of discoidin domain receptor 2 does not affect smooth muscle cell adhesion, migration, or proliferation in response to type I collagen. Cardiovasc Pathol 21:214–218

    Article  CAS  PubMed  Google Scholar 

  19. Xu L et al (2005) Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase 13 associated with osteoarthritis in mice. J Biol Chem 280:548–555

    Article  CAS  PubMed  Google Scholar 

  20. Xu L et al (2007) Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis Rheum 56:2663–2673

    Article  CAS  PubMed  Google Scholar 

  21. Xu L et al (2011) Intact pericellular matrix of articular cartilage is required for unactivated discoidin domain receptor 2 in the mouse model. Am J Pathol 179:1338–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu L et al (2010) Attenuation of osteoarthritis progression by reduction of discoidin domain receptor 2 in mice. Arthritis Rheum 62:2736–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salazar A, Polur I, Servais JM, Li Y, Xu L (2014) Delayed progression of condylar cartilage degeneration, by reduction of the discoidin domain receptor 2, in the temporomandibular joints of osteoarthritic mouse models. J Oral Pathol Med 43:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schminke B et al (2014) A discoidin domain receptor 1 knock-out mouse as a novel model for osteoarthritis of the temporomandibular joint. Cell Mol Life Sci 71:1081–1096

    Article  CAS  PubMed  Google Scholar 

  25. Su J et al (2009) Discoidin domain receptor 2 is associated with the increased expression of matrix metalloproteinase-13 in synovial fibroblasts of rheumatoid arthritis. Mol Cell Biochem 330:141–152

    Article  CAS  PubMed  Google Scholar 

  26. Avivi-Green C, Singal M, Vogel WF (2006) Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 174:420–427

    Article  CAS  PubMed  Google Scholar 

  27. Olaso E, Arteta B, Benedicto A, Crende O, Friedman SL (2011) Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages. Am J Pathol 179:2894–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olaso E et al (2001) DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 108:1369–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo Z et al (2013) RNA interference against discoidin domain receptor 2 ameliorates alcoholic liver disease in rats. PLoS One 8:e55860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rowe RG et al (2011) Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 31:2392–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang K et al (2013) The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol 15:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R (2012) Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 31:295–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren T, Zhang J, Zhang J, Liu X, Yao L (2013) Increased expression of discoidin domain receptor 2 (DDR2): a novel independent prognostic marker of worse outcome in breast cancer patients. Med Oncol 30:397

    Article  PubMed  Google Scholar 

  34. Toy KA et al (2015) Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Res Treat 150:9–18

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S et al (2014) A host deficiency of discoidin domain receptor 2 (DDR2) inhibits both tumour angiogenesis and metastasis. J Pathol 232:436–448

    Article  CAS  PubMed  Google Scholar 

  36. Afonso PV, McCann CP, Kapnick SM, Parent CA (2013) Discoidin domain receptor 2 regulates neutrophil chemotaxis in 3D collagen matrices. Blood 121:1644–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hammerman PS et al (2011) Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 1:78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tomasson MH et al (2008) Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 111:4797–4808

    Article  CAS  PubMed  Google Scholar 

  39. Ambrogio C et al (2016) Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat Med

    Google Scholar 

  40. Agarwal G, Kovac L, Radziejewski C, Samuelsson SJ (2002) Binding of discoidin domain receptor 2 to collagen I: an atomic force microscopy investigation. Biochemistry 41:11091–11098

    Article  CAS  PubMed  Google Scholar 

  41. Xu H et al (2012) Discoidin domain receptors promote alpha1beta1- and alpha2beta1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS One 7:e52209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Staudinger LA et al (2013) Interactions between the discoidin domain receptor 1 and beta1 integrin regulate attachment to collagen. Biol Open 2:1148–1159

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hidalgo-Carcedo C et al (2011) Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13:49–58

    Article  CAS  PubMed  Google Scholar 

  44. Eswaramoorthy R et al (2010) DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol 224:387–397

    Article  CAS  PubMed  Google Scholar 

  45. Rowe RG et al (2009) Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J Cell Biol 184:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Batlle R et al (2013) Snail1 controls TGF-beta responsiveness and differentiation of mesenchymal stem cells. Oncogene 32:3381–3389

    Article  CAS  Google Scholar 

  47. Shields MA et al (2013) Snail cooperates with KrasG12D to promote pancreatic fibrosis. Mol Cancer Res 11:1078–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shintani Y et al (2008) Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol 180:1277–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walsh LA, Nawshad A, Medici D (2011) Discoidin domain receptor 2 is a critical regulator of epithelial-mesenchymal transition. Matrix Biol 30:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ren T et al (2014) Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia. J Pathol 234:526–537

    Article  CAS  PubMed  Google Scholar 

  51. Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW (2011) DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem 286:17672–17681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Valencia K et al (2012) Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin Cancer Res 18:969–980

    Article  CAS  PubMed  Google Scholar 

  53. Badiola I, Villace P, Basaldua I, Olaso E (2011) Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability. Oncol Rep 26:971–978

    CAS  PubMed  Google Scholar 

  54. Badiola I, Olaso E, Crende O, Friedman SL, Vidal-Vanaclocha F (2012) Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut 61:1465–1472

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Longmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Longmore, G.D., Grither, W.R. (2016). Discoidin Domain Receptors and Disease. In: Fridman, R., Huang, P. (eds) Discoidin Domain Receptors in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6383-6_6

Download citation

Publish with us

Policies and ethics