Skip to main content

Functions of DDR1 in Epithelial Cell Differentiation

  • Chapter
  • First Online:
Discoidin Domain Receptors in Health and Disease

Abstract

Epithelial cell differentiation is a critical element in the development and progression of disease, and the assembly of adherens junctions is the limiting step that determines epithelial cell differentiation. Signals from the microenvironment, including growth factors, cytokines, or the extracellular matrix, all have a significant impact on the assembly of adherens junctions. An increase of collagen deposition is no longer considered to be a consequence, but rather an inducer of disease progression, as the signal from integrin α2β1 mediates epithelial dedifferentiation via disturbing the stability of adherens junctions. However, as a collagen receptor, discoidin domain receptor 1 (DDR1) exhibits counter effects in regulating epithelial cell differentiation. This is due to the ability of DDR1 to maintain the stability of adherens junctions. The evidence and mechanisms whereby DDR1 regulates epithelial cell differentiation will all be addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oft M, Peli J, Rudaz C et al (1996) TGF-beta1 and Ha-Ras collaborate inmodulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10(19):2462–2477

    Article  CAS  PubMed  Google Scholar 

  2. Sato M, Muragaki Y, Saika S et al (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112(10):1486–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grotegut S, von Schweinitz D, Christofori G et al (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of snail. EMBO J 25(15):3534–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Sandiford S, Wu C et al (2009) Numb regulates cell-cell adhesion and polarity in response to tyrosine kinase signaling. EMBO J 28(16):2360–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeisberg M, Hanai J, Sugimoto H et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9(7):964–968

    Article  CAS  PubMed  Google Scholar 

  7. Kivirikko KI (1993) Collagens and their abnormalities in a wide spectrum of diseases. Ann Med 25(2):113–126

    Article  CAS  PubMed  Google Scholar 

  8. Zeisberg M, Strutz F, Müller GA (2000) Role of fibroblast activation in inducing interstitial fibrosis. J Nephrol 13(Suppl 3):S111–S120

    PubMed  Google Scholar 

  9. Zeisberg M, Kalluri R (2013) Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 304(3):C216–C225

    Article  CAS  PubMed  Google Scholar 

  10. Hay ED, Zuk A (1995) Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 26(4):678–690

    Article  CAS  PubMed  Google Scholar 

  11. Shintani Y, Wheelock MJ, Johnson KR (2006) PI3K-rac1-jnk signaling mediates collage I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells. Mol Biol Cell 17(7):2963–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medici D, Nawshad A (2010) Type I collagen promotes epithelial-mesenchymal transition through ILK-dependent activation of NF-kappaB and LEF-1. Matrix Biol 29(3):161–165

    Article  CAS  PubMed  Google Scholar 

  13. Vallés AM, Boyer B, Tarone G et al (1996) Alpha 2 beta 1 integrin is required for the collagen and FGF-1 induced cell dispersion in a rat bladder carcinoma cell line. Cell Adhes Commun 4(3):187–199

    Article  PubMed  Google Scholar 

  14. Fan JM, Ng YY, Hill PA et al (1999) Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56(4):1455–1467

    Article  CAS  PubMed  Google Scholar 

  15. Shintani Y, Maeda M, Chaika N et al (2008) Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol 38(1):95–104

    Article  CAS  PubMed  Google Scholar 

  16. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Tan X, Dai C et al (2009) Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 20(9):1907–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeh YC, Wei WC, Wang YK et al (2010) Transforming growth factor-β1 induces Smad3-dependent β1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol 177(4):1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reitherman RW, Rosen SD, Frasier WA et al (1975) Cell surface species-specific high affinity receptors for discoidin: developmental regulation in Dictyostelium discoideum. Proc Natl Acad Sci U S A 72(9):3541–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Springer WR, Cooper DN, Barondes SH (1984) Discoidin I is implicated in cell-substratum attachment and ordered cell migration of Dictyostelium discoideum and resembles fibronectin. Cell 39(3 Pt 2):557–564

    Article  CAS  PubMed  Google Scholar 

  21. Alves F, Vogel W, Mossie K et al (1995) Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene 10(3):609–618

    CAS  PubMed  Google Scholar 

  22. Shelling AN, Butler R, Jones T et al (1995) Localization of an epithelial-specific receptor kinase (EDDR1) to chromosome 6q16. Genomics 25(2):584–587

    Article  CAS  PubMed  Google Scholar 

  23. Vogel W, Gish GD, Alves F et al (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1(1):13–23

    Article  CAS  PubMed  Google Scholar 

  24. Zerlin M, Julius MA, Goldfarb M (1993) NEP: a novel receptor-like tyrosine kinase expressed in proliferating neuroepithelia. Oncogene 8(10):2731–2739

    CAS  PubMed  Google Scholar 

  25. Lai C, Lemke G (1991) An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6(5):691–704

    Article  CAS  PubMed  Google Scholar 

  26. Vogel W (1999) Discoidin domain receptors: structural relations and functional implications. FASEB J 13(Suppl):S77–S82

    CAS  PubMed  Google Scholar 

  27. Di Marco E, Cutuli N, Guerra L et al (1993) Molecular cloning of trkE, a novel trk-related putative tyrosine kinase receptor isolated from normal human keratinocytes and widely expressed by normal human tissues. J Biol Chem 268(32):24290–24295

    PubMed  Google Scholar 

  28. Sakamoto O, Suga M, Suda T et al (2001) Expression of discoidin domain receptor 1 tyrosine kinase on the human bronchial epithelium. Eur Respir J 17(5):969–974

    Article  CAS  PubMed  Google Scholar 

  29. Sainio K, Raatikainen-Ahokas A (1999) Mesonephric kidney: a stem cell factory. Int J Dev Biol 43(5):435–439

    CAS  PubMed  Google Scholar 

  30. Vainio S, Lehtonen E, Jalkanen M et al (1989) Epithelial-mesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney. Dev Biol 134(2):382–391

    Article  CAS  PubMed  Google Scholar 

  31. Vainio S, Jalkanen M, Bernfield M et al (1992) Transient expression of syndecan in mesenchymal cell aggregates of the embryonic kidney. Dev Biol 152(2):221–232

    Article  CAS  PubMed  Google Scholar 

  32. Esteban MA, Bao X, Zuhang Q et al (2012) The mesenchymal-to-epithelial transition in somatic cell reprogramming. Curr Opin Genet Dev 22(5):423–428

    Article  CAS  PubMed  Google Scholar 

  33. Li R, Liang J, Ni S et al (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7(1):51–63

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura M, Tokura Y (2011) Epithelial-mesenchymal transition in the skin. J Dermatol Sci 61(1):7–13

    Article  CAS  PubMed  Google Scholar 

  35. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850

    Article  PubMed  CAS  Google Scholar 

  36. Gumbiner B, Stevenson B, Grimaldi A (1988) The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 107(4):1575–1587

    Article  CAS  PubMed  Google Scholar 

  37. Gumbiner B (1990) Generation and maintenance of epithelial cell polarity. Curr Opin Cell Biol 2(5):881–887

    Article  CAS  PubMed  Google Scholar 

  38. Capaldo CT, Macara IG (2007) Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 18(1):189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Larue L, Antos C, Butz S (1996) A role for cadherins in tissue formation. Development 122(10):3185–3194

    CAS  PubMed  Google Scholar 

  40. Malaguti M, Nistor PA, Blin G et al (2013) Bone morphogenic protein signaling suppresses differentiation of pluripotent cells by maintaining expression of E-cadherin. Elife 2, e01197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Schäfer G, Narasimha M, Vogelsang E et al (2014) Cadherin switching during the formation and differentiation of the Drosophila mesoderm: implications for epithelial mesenchymal transitions. J Cell Sci 127(Pt 7):1511–1522

    Article  PubMed  CAS  Google Scholar 

  42. Strutz F, Okada H, Lo CW et al (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405

    Article  CAS  PubMed  Google Scholar 

  43. Okada H, Inoue T, Suzuki H et al (2000) Epithelial-mesenchymal transformation of renal tubular epithelial cells in vitro and in vivo. Nephrol Dial Transplant 15(Suppl 6):44–46

    Article  PubMed  Google Scholar 

  44. Kallui R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784

    Article  CAS  Google Scholar 

  45. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15(1):1–12

    Article  CAS  PubMed  Google Scholar 

  46. Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153(2):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  48. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39(3):305–318

    Article  CAS  PubMed  Google Scholar 

  49. Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116(Pt 1):17–27

    Article  CAS  PubMed  Google Scholar 

  50. Takai Y, Irie K, Shimizu K et al (2003) Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 94(8):655–667

    Article  CAS  PubMed  Google Scholar 

  51. Fukuhara A, Irie K, Yamada A et al (2002) Role of nectin in organization of tight junctions in epithelial cells. Genes Cells 7(10):1059–1072

    Article  CAS  PubMed  Google Scholar 

  52. Yap AS, Kovacs EM (2003) Direct cadherin-activated cell signaling: a view from the plasma membrane. J Cell Biol 160(1):11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato T, Fujita N, Yamada A et al (2006) Regulation of the assembly and adhesion activity of E-cadherin by nectin and afadin for the formation of adherens junctions in Madin-Darby canine kidney cells. J Biol Chem 281(8):5288–5299

    Article  CAS  PubMed  Google Scholar 

  54. Tsukita S, Tsukita S, Nagafuchi A et al (1992) Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. Curr Opin Cell Biol 4(5):834–839

    Article  CAS  PubMed  Google Scholar 

  55. Leckband D, Prakasam A (2006) Mechanism and dynamics of cadherin adhesion. Annu Rev Biomed Eng 8:259–287

    Article  CAS  PubMed  Google Scholar 

  56. Vasioukjin V, Fuchs E (2001) Actin dynamics and cell-cell adhesion in epithelia. Curr Opin Cell Biol 13(1):76–84

    Article  Google Scholar 

  57. Shen K, Turner JR (2005) Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell 16(9):3919–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Troyanovsky S (2005) Cadherin dimers in cell-cell adhesion. Eur J Cell Biol 84(2–3):225–233

    Article  CAS  PubMed  Google Scholar 

  59. Troyanovsky RB, Sokolov EP, Troyanovsky SM (2006) Endocytosis of cadherin form intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Mol Biol Cell 17(8):3484–4393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pokutta S, Weis WI (2007) Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 23:237–261

    Article  CAS  PubMed  Google Scholar 

  61. Adams CL, Chen YT, Smith SJ et al (1998) Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol 142(4):1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cavey M, Rauzi M, Lenne PF et al (2008) A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453(7196):751–756

    Article  CAS  PubMed  Google Scholar 

  63. Nelson WT (2008) Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans 36(Pt 2):149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jönsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 114(Pt 11):2043–2053

    PubMed  Google Scholar 

  65. Montesano R, Schaller G, Orci L (1991) Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66(4):697–711

    Article  CAS  PubMed  Google Scholar 

  66. Montesano R, Matsumoto K, Nakamura T et al (1991) Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67(5):901–908

    Article  CAS  PubMed  Google Scholar 

  67. Pollack AL, Runyan RB, Mostov KE (1998) Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell-cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev Biol 204(1):64–79

    Article  CAS  PubMed  Google Scholar 

  68. Hogan BL, Kolodzieh PA (2002) Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet 3(7):513–523

    Article  CAS  PubMed  Google Scholar 

  69. Marrs JA (2010) Branching morphogenesis: Rac signaling “PIX” tubulogenesis. Focus on “Pak1 regulates branching morphogenesis in 3D MDCK cell culture by a PIX and beta1-integrin-dependent mechanism”. Am J Physiol Cell Physiol 299(1):C7–C10

    Article  CAS  PubMed  Google Scholar 

  70. Wang CZ, Hsu YM, Tang MJ (2005) Function of discoidin domain receptor HGF-induced branching tubulogenesis MDCK cells in collagen gel. J Cell Physiol 203(1):295–304

    Article  CAS  PubMed  Google Scholar 

  71. Wang CZ, Su HW, Hsu YC et al (2006) Discoidin domain receptor 1/SHP-2 signaling complex inhibits α2β1-integrin-mediated signal transducers and activators of transcription 1/3 activation and cell migration. Mol Biol Cell 17(6):2839–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yeh YC, Wang CZ, Tang MJ (2009) Discoidin domain receptor 1 activation suppresses alpha2beta1 integrin-dependent cell spreading through inhibition of Cdc42 activity. J Cell Physiol 218(1):146–156

    Article  CAS  PubMed  Google Scholar 

  73. Marceau N, Goyette R, Deschênes J et al (1980) Morphological differences between epithelial and fibroblast cells in rat liver cultures, and the role of cell surface fibronectin and cytoskeletal element organization in cell shape. Ann N Y Acad Sci 349:138–152

    Article  CAS  PubMed  Google Scholar 

  74. Yonemura S, Itoh M, Nagafuchi A et al (1995) Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci 108(Pt 1):127–142

    CAS  PubMed  Google Scholar 

  75. Yeh YC, Wu CC, Wang YK et al (2011) DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell 22(7):940–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eswaramoorthy R, Wang CK, Chen WC et al (2010) DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol 224(2):387–397

    Article  CAS  PubMed  Google Scholar 

  77. Hirano S, Nose A, Hatta K et al (1987) Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J Cell Biol 105(6 Pt 1):2501–2510

    Article  CAS  PubMed  Google Scholar 

  78. Smutny M, Cox HL, Leerberg JM et al (2010) Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12(7):696–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mangold S, Wu SK, Norwood SJ et al (2011) Hepatocyte growth factor acutely perturbs actin filament anchorage at the epithelial zonula adherens. Curr Biol 21(6):503–537

    Article  CAS  PubMed  Google Scholar 

  80. Georgiou M, Marinari E, Burden J et al (2008) Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr Biol 18(21):1631–1638

    Article  CAS  PubMed  Google Scholar 

  81. Leibfried A, Fricke R, Morgan MJ et al (2008) Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin. Curr Biol 18(21):1639–1648

    Article  CAS  PubMed  Google Scholar 

  82. Leung T, Chen XQ, Tan I et al (1998) Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol 18(1):130–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilkinson S, Paterson HF, Marchall CJ (2005) Cdc42-MRCK and Rho-ROCK signaling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 7(3):255–261

    Article  CAS  PubMed  Google Scholar 

  84. Hidalgo-Carcedo C, Hooper S, Chaudhry SI et al (2011) Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13(1):49–58

    Article  CAS  PubMed  Google Scholar 

  85. Amano M, Ito M, Kimura K et al (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271(34):20246–20249

    Article  CAS  PubMed  Google Scholar 

  86. Carothers AM, Javid SH, Moran AE et al (2006) Deficient E-cadherin adhesion in C57BL/6J-Min/+ mice is associated with increased tyrosine kinase activity and RhoA-dependent actomyosin contractility. Exp Cell Res 312(4):387–400

    Article  CAS  PubMed  Google Scholar 

  87. Avizienyte E, Wyke AW, Jones RJ et al (2002) Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signaling. Nat Cell Biol 4(8):632–638

    CAS  PubMed  Google Scholar 

  88. Avizienyte E, Fincham VJ, Brunton VG et al (2004) Src SH3/2 domain-mediated peripheral accumulation of Src and phosphor-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 15(6):2794–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Canel M, Serrels A, Miller D et al (2010) Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res 70(22):9413–9422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li Y, Yang J, Dai C et al (2003) Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 112(4):503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tan C, Costello P, Sanghera J et al (2001) Inhibition of integrin-linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC−/− human colon carcinoma cells. Oncogene 20(1):133–140

    Article  CAS  PubMed  Google Scholar 

  92. McPhee TR, McDonald PC, Oloumi A et al (2008) Integrin-linked kinase regulates E-cadherin expression through PARP-1. Dev Dyn 237(10):2737–2747

    Article  CAS  PubMed  Google Scholar 

  93. de Rooij J, Kerstens A, Danuser G et al (2005) Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J Cell Biol 171(1):153–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Fujita Y, Krause G, Scheffner M et al (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4(3):222–231

    Article  CAS  PubMed  Google Scholar 

  95. Shen Y, Hirsch DS, Sasiela CA et al (2008) Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 283(8):5127–5137

    Article  CAS  PubMed  Google Scholar 

  96. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Samuel MS, Lopez JI, McGhee EJ et al (2011) Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induced epidermal hyperplasia and tumor growth. Cancer Cell 19(9):776–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yeh YC, Lin HH, Tang MJ (2012) A tale of two collagen receptors, integrin β1 and discoidin domain receptor 1, in epithelial cell differentiation. Am J Physiol Cell Physiol 303(12):C1207–C1217

    Article  CAS  PubMed  Google Scholar 

  100. Wang CZ, Yeh YC, Tang MJ (2009) DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. Am J Physiol Cell Physiol 297(2):C419–C429

    Article  CAS  PubMed  Google Scholar 

  101. Wu H, Liang YL, Li Z et al (2006) Positive expression of E-cadherin suppresses cell adhesion to fibronectin via reduction of α5β1 integrin in human breast carcinoma cells. J Cancer Res Clin Oncol 132(12):795–803

    Article  CAS  PubMed  Google Scholar 

  102. Borghi N, Lowndes M, Maruthamuthu V et al (2009) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesion. Proc Natl Acad Sci U S A 107(30):13324–13329

    Article  Google Scholar 

  103. Yamada S, Nelson WJ (2007) Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178(3):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vogel W, Aszódi A, Alves F et al (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21(8):2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Labrador JP, Azcoitia V, Tuckermann J et al (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2(5):446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bargal R, Cormier-Daire V, Ben-Neriah Z et al (2009) Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am J Hum Genet 84(1):80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gross O, Beirowski B, Harvey SJ et al (2004) DDR1-deficienct mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int 66(1):102–111

    Article  CAS  PubMed  Google Scholar 

  108. Meyer zum Gottesberge AM, Gross O, Becker-Lendzian U et al (2008) Inner ear defects and hearing loss in mice lacking the collagen receptor DDR1. Lab Invest 88(1):27–37

    Article  CAS  PubMed  Google Scholar 

  109. Hansen C, Greengard P, Nairn AC et al (2006) Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Exp Cell Res 321(20):4011–4018

    Article  CAS  Google Scholar 

  110. Turashvili G, Bouchal J, Baumforth K et al (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microassay analysis. BMC Cancer 7:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM et al (2004) Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin Cancer Res 10(13):4427–4436

    Article  CAS  PubMed  Google Scholar 

  112. Câmara J, Jarai G (2010) Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair 3(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lee R, Eidman KE, Kren SM et al (2004) Localization of discoidin domain receptors in rat kidney. Nephron Exp Nephrol 97(2), e62

    Article  CAS  PubMed  Google Scholar 

  114. Maeyama M, Koga H, Selvendiran K et al (2008) Switching in discoidin domain receptor expressions in SLUG-induced epithelial-mesenchymal transition. Cancer 113(10):2823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jer Tang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yeh, YC., Tang, MJ. (2016). Functions of DDR1 in Epithelial Cell Differentiation. In: Fridman, R., Huang, P. (eds) Discoidin Domain Receptors in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6383-6_13

Download citation

Publish with us

Policies and ethics