Skip to main content

Anesthesia and Intraoperative Management of Renal Transplantation

  • Chapter
  • First Online:
Anesthesia and Perioperative Care for Organ Transplantation

Abstract

The global epidemic of diabetes and hypertension has resulted in a dramatic increase of chronic kidney disease. For patients with end-stage renal disease, a transplant provides better survival and health-related quality of life than dialysis and is less resource intensive and more cost effective. Renal transplantation is the most commonly performed organ transplantation in the world, but because of organ shortages, the number of transplants is not increasing significantly. In an attempt to alleviate the organ shortage, expanded criteria for donors and donation after cardiac death are alternative strategies to increase the cadaveric donor pool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.

    Article  PubMed  Google Scholar 

  2. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30.

    Article  CAS  PubMed  Google Scholar 

  3. Rebollo P, Ortega F, Baltar JM, Badia X, Alvarez-Ude F, Diaz-Corte C, et al. Health related quality of life (HRQOL) of kidney transplanted patients: variables that influence it. Clin Transplant. 2000;14(3):199–207.

    Article  CAS  PubMed  Google Scholar 

  4. Neovius M, Jacobson SH, Eriksson JK, Elinder CG, Hylander B. Mortality in chronic kidney disease and renal replacement therapy: a population-based cohort study. BMJ Open. 2014;4(2):e004251.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C, et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int. 1996;50(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  6. Snyder RA, Moore DR, Moore DE. More donors or more delayed graft function? A cost-effectiveness analysis of DCD kidney transplantation. Clin Transplant. 2013;27(2):289–96.

    Article  PubMed  Google Scholar 

  7. Martinez-Vaquera S, Navarro Cabello MD, Lopez-Andreu M, Jurado JM, Haad CR, Salas RO, et al. Outcomes in renal transplantation with expanded-criteria donors. Transplant Proc. 2013;45(10):3595–8.

    Article  CAS  PubMed  Google Scholar 

  8. Wadei HM, Heckman MG, Rawal B, Taner CB, Farahat W, Nur L, et al. Comparison of kidney function between donation after cardiac death and donation after brain death kidney transplantation. Transplantation. 2013;96(3):274–81.

    Article  PubMed  Google Scholar 

  9. Cosio FG, Alamir A, Yim S, Pesavento TE, Falkenhain ME, Henry ML, et al. Patient survival after renal transplantation: I. The impact of dialysis pre-transplant. Kidney Int. 1998;53(3):767–72.

    Article  CAS  PubMed  Google Scholar 

  10. Lentine KL, Costa SP, Weir MR, Robb JF, Fleisher LA, Kasiske BL, et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates: a scientific statement from the American Heart Association and the American College of Cardiology Foundation: endorsed by the American Society of Transplant Surgeons, American Society of Transplantation, and National Kidney Foundation. Circulation. 2012;126(5):617–63.

    Article  PubMed  Google Scholar 

  11. Zimmerman D, Sood MM, Rigatto C, Holden RM, Hiremath S, Clase CM. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol Dial Transplant. 2012;27(10):3816–22.

    Article  CAS  PubMed  Google Scholar 

  12. Lenihan CR, Montez-Rath ME, Scandling JD, Turakhia MP, Winkelmayer WC. Outcomes after kidney transplantation of patients previously diagnosed with atrial fibrillation. Am J Transplant. 2013;13(6):1566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawar B, Ellam T, Jackson C, Kiely DG. Pulmonary hypertension in renal disease: epidemiology, potential mechanisms and implications. Am J Nephrol. 2013;37(3):281–90.

    Article  CAS  PubMed  Google Scholar 

  14. Yigla M, Nakhoul F, Sabag A, Tov N, Gorevich B, Abassi Z, et al. Pulmonary hypertension in patients with end-stage renal disease. Chest. 2003;123(5):1577–82.

    Article  PubMed  Google Scholar 

  15. Bozbas SS, Akcay S, Altin C, Bozbas H, Karacaglar E, Kanyilmaz S, et al. Pulmonary hypertension in patients with end-stage renal disease undergoing renal transplantation. Transplant Proc. 2009;41(7):2753–6.

    Article  CAS  PubMed  Google Scholar 

  16. Reddy YN, Lunawat D, Abraham G, Matthew M, Mullasari A, Nagarajan P, et al. Progressive pulmonary hypertension: another criterion for expeditious renal transplantation. Saudi J Kidney Dis Transpl. 2013;24(5):925–9.

    Article  PubMed  Google Scholar 

  17. Karthikeyan V, Chattahi J, Kanneh H, Koneru J, Hayek S, Patel A, et al. Impact of pre-existing left ventricular dysfunction on kidney transplantation outcomes: implications for patient selection. Transplant Proc. 2011;43(10):3652–6.

    Article  CAS  PubMed  Google Scholar 

  18. Wali RK, Wang GS, Gottlieb SS, Bellumkonda L, Hansalia R, Ramos E, et al. Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J Am Coll Cardiol. 2005;45(7):1051–60.

    Article  PubMed  Google Scholar 

  19. Taber DJ, Meadows HB, Pilch NA, Chavin KD, Baliga PK, Egede LE. Pre-existing diabetes significantly increases the risk of graft failure and mortality following renal transplantation. Clin Transplant. 2013;27(2):274–82.

    Article  PubMed  Google Scholar 

  20. Hayer MK, Farrugia D, Begaj I, Ray D, Sharif A. Infection-related mortality is higher for kidney allograft recipients with pretransplant diabetes mellitus. Diabetologia. 2014;57(3):554–61.

    Article  PubMed  Google Scholar 

  21. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol. 2008;3(5):1526–33.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Parekh J, Roll GR, Feng S, Niemann CU, Hirose R. Peri-operative hyperglycemia is associated with delayed graft function in deceased donor renal transplantation. Clin Transplant. 2013;27(4):E424–30.

    Article  PubMed  Google Scholar 

  23. Kek PC, Tan HC, Kee TY, Goh SY, Bee YM. Day 1 post-operative fasting hyperglycemia may affect graft survival in kidney transplantation. Ann Transplant. 2013;18:265–72.

    Article  PubMed  Google Scholar 

  24. Hermayer KL, Egidi MF, Finch NJ, Baliga P, Lin A, Kettinger L, et al. A randomized controlled trial to evaluate the effect of glycemic control on renal transplantation outcomes. J Clin Endocrinol Metab. 2012;97(12):4399–406.

    Article  CAS  PubMed  Google Scholar 

  25. Eknoyan G. The importance of early treatment of the anaemia of chronic kidney disease. Nephrol Dial Transplant. 2001;16 Suppl 5:45–9.

    Article  CAS  PubMed  Google Scholar 

  26. Djamali A, Becker YT, Simmons WD, Johnson CA, Premasathian N, Becker BN. Increasing hematocrit reduces early posttransplant cardiovascular risk in diabetic transplant recipients. Transplantation. 2003;76(5):816–20.

    Article  PubMed  Google Scholar 

  27. Jalal DI, Chonchol M, Targher G. Disorders of hemostasis associated with chronic kidney disease. Semin Thromb Hemost. 2010;36(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  28. Lutz J, Menke J, Sollinger D, Schinzel H, Thurmel K. Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 2014;29(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  29. Fassett RG. Current and emerging treatment options for the elderly patient with chronic kidney disease. Clin Interv Aging. 2014;9:191–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Curran SP, Famure O, Li Y, Kim SJ. Increased recipient body mass index is associated with acute rejection and other adverse outcomes after kidney transplantation. Transplantation. 2014;97(1):64–70.

    Article  PubMed  Google Scholar 

  31. Maamoun HA, Soliman AR, Fathy A, Elkhatib M, Shaheen N. Diabetes mellitus as predictor of patient and graft survival after kidney transplantation. Transplant Proc. 2013;45(9):3245–8.

    Article  CAS  PubMed  Google Scholar 

  32. Stock PG, Barin B, Murphy B, Hanto D, Diego JM, Light J, et al. Outcomes of kidney transplantation in HIV-infected recipients. N Engl J Med. 2010;363(21):2004–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gennari FJ, Segal AS. Hyperkalemia: an adaptive response in chronic renal insufficiency. Kidney Int. 2002;62(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Strid H, Simren M, Stotzer PO, Abrahamsson H, Bjornsson ES. Delay in gastric emptying in patients with chronic renal failure. Scand J Gastroenterol. 2004;39(6):516–20.

    Article  CAS  PubMed  Google Scholar 

  35. Salles Junior LD, Santos PR, dos Santos AA, de Souza MH. Dyspepsia and gastric emptying in end-stage renal disease patients on hemodialysis. BMC Nephrol. 2013;14:275.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mark JB. Central venous pressure monitoring: clinical insights beyond the numbers. J Cardiothorac Vasc Anesth. 1991;5(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  37. Cannesson M, Slieker J, Desebbe O, Bauer C, Chiari P, Henaine R, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008;106(4):1195–200. table of contents.

    Article  PubMed  Google Scholar 

  38. Ochs HR, Greenblatt DJ, Kaschell HJ, Klehr U, Divoll M, Abernethy DR. Diazepam kinetics in patients with renal insufficiency or hyperthyroidism. Br J Clin Pharmacol. 1981;12(6):829–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vinik HR, Reves JG, Greenblatt DJ, Abernethy DR, Smith LR. The pharmacokinetics of midazolam in chronic renal failure patients. Anesthesiology. 1983;59(5):390–4.

    Article  CAS  PubMed  Google Scholar 

  40. Burch PG, Stanski DR. Decreased protein binding and thiopental kinetics. Clin Pharmacol Ther. 1982;32(2):212–7.

    Article  CAS  PubMed  Google Scholar 

  41. Goyal P, Puri GD, Pandey CK, Srivastva S. Evaluation of induction doses of propofol: comparison between endstage renal disease and normal renal function patients. Anaesth Intensive Care. 2002;30(5):584–7.

    CAS  PubMed  Google Scholar 

  42. Ickx B, Cockshott ID, Barvais L, Byttebier G, De Pauw L, Vandesteene A, et al. Propofol infusion for induction and maintenance of anaesthesia in patients with end-stage renal disease. Br J Anaesth. 1998;81(6):854–60.

    Article  CAS  PubMed  Google Scholar 

  43. de Gasperi A, Mazza E, Noe L, Corti A, Cristalli A, Prosperi M, et al. Pharmacokinetic profile of the induction dose of propofol in chronic renal failure patients undergoing renal transplantation. Minerva Anestesiol. 1996;62(1–2):25–31.

    PubMed  Google Scholar 

  44. Costela JL, Jimenez R, Calvo R, Suarez E, Carlos R. Serum protein binding of propofol in patients with renal failure or hepatic cirrhosis. Acta Anaesthesiol Scand. 1996;40(6):741–5.

    Article  CAS  PubMed  Google Scholar 

  45. Komatsu R, You J, Mascha EJ, Sessler DI, Kasuya Y, Turan A. Anesthetic induction with etomidate, rather than propofol, is associated with increased 30-day mortality and cardiovascular morbidity after noncardiac surgery. Anesth Analg. 2013;117(6):1329–37.

    Article  CAS  PubMed  Google Scholar 

  46. Carlos R, Calvo R, Erill S. Plasma protein binding of etomidate in patients with renal failure or hepatic cirrhosis. Clin Pharmacokinet. 1979;4(2):144–8.

    Article  CAS  PubMed  Google Scholar 

  47. Christensen JH, Andreasen F, Jansen J. Pharmacokinetics and pharmacodynamics of thiopental in patients undergoing renal transplantation. Acta Anaesthesiol Scand. 1983;27(6):513–8.

    Article  CAS  PubMed  Google Scholar 

  48. Morio M, Fujii K, Satoh N, Imai M, Kawakami U, Mizuno T, et al. Reaction of sevoflurane and its degradation products with soda lime. Toxicity of the byproducts. Anesthesiology. 1992;77(6):1155–64.

    Article  CAS  PubMed  Google Scholar 

  49. Gonsowski CT, Laster MJ, Eger II EI, Ferrell LD, Kerschmann RL. Toxicity of compound A in rats. Effect of increasing duration of administration. Anesthesiology. 1994;80(3):566–73.

    Article  CAS  PubMed  Google Scholar 

  50. Altuntas TG, Zager RA, Kharasch ED. Cytotoxicity of S-conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether (Compound A) in a human proximal tubular cell line. Toxicol Appl Pharmacol. 2003;193(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  51. Groudine SB, Fragen RJ, Kharasch ED, Eisenman TS, Frink EJ, McConnell S. Comparison of renal function following anesthesia with low-flow sevoflurane and isoflurane. J Clin Anesth. 1999;11(3):201–7.

    Article  CAS  PubMed  Google Scholar 

  52. Mazze RI, Callan CM, Galvez ST, Delgado-Herrera L, Mayer DB. The effects of sevoflurane on serum creatinine and blood urea nitrogen concentrations: a retrospective, twenty-two-center, comparative evaluation of renal function in adult surgical patients. Anesth Analg. 2000;90(3):683–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ebert TJ, Frink Jr EJ, Kharasch ED. Absence of biochemical evidence for renal and hepatic dysfunction after 8 hours of 1.25 minimum alveolar concentration sevoflurane anesthesia in volunteers. Anesthesiology. 1998;88(3):601–10.

    Article  CAS  PubMed  Google Scholar 

  54. Ebert TJ, Messana LD, Uhrich TD, Staacke TS. Absence of renal and hepatic toxicity after four hours of 1.25 minimum alveolar anesthetic concentration sevoflurane anesthesia in volunteers. Anesth Analg. 1998;86(3):662–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ebert TJ, Arain SR. Renal responses to low-flow desflurane, sevoflurane, and propofol in patients. Anesthesiology. 2000;93(6):1401–6.

    Article  CAS  PubMed  Google Scholar 

  56. Kharasch ED, Frink Jr EJ, Zager R, Bowdle TA, Artru A, Nogami WM. Assessment of low-flow sevoflurane and isoflurane effects on renal function using sensitive markers of tubular toxicity. Anesthesiology. 1997;86(6):1238–53.

    Article  CAS  PubMed  Google Scholar 

  57. Eger II EI, Koblin DD, Bowland T, Ionescu P, Laster MJ, Fang Z, et al. Nephrotoxicity of sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg. 1997;84(1):160–8.

    Article  CAS  PubMed  Google Scholar 

  58. Eger II EI, Gong D, Koblin DD, Bowland T, Ionescu P, Laster MJ, et al. Dose-related biochemical markers of renal injury after sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg. 1997;85(5):1154–63.

    Article  CAS  PubMed  Google Scholar 

  59. Goldberg ME, Cantillo J, Gratz I, Deal E, Vekeman D, McDougall R, et al. Dose of compound A, not sevoflurane, determines changes in the biochemical markers of renal injury in healthy volunteers. Anesth Analg. 1999;88(2):437–45.

    CAS  PubMed  Google Scholar 

  60. Goldberg ME, Cantillo J, Larijani GE, Torjman M, Vekeman D, Schieren H. Sevoflurane versus isoflurane for maintenance of anesthesia: are serum inorganic fluoride ion concentrations of concern? Anesth Analg. 1996;82(6):1268–72.

    CAS  PubMed  Google Scholar 

  61. Conzen PF, Nuscheler M, Melotte A, Verhaegen M, Leupolt T, Van Aken H, et al. Renal function and serum fluoride concentrations in patients with stable renal insufficiency after anesthesia with sevoflurane or enflurane. Anesth Analg. 1995;81(3):569–75.

    CAS  PubMed  Google Scholar 

  62. Conzen PF, Kharasch ED, Czerner SF, Artru AA, Reichle FM, Michalowski P, et al. Low-flow sevoflurane compared with low-flow isoflurane anesthesia in patients with stable renal insufficiency. Anesthesiology. 2002;97(3):578–84.

    Article  CAS  PubMed  Google Scholar 

  63. Higuchi H, Adachi Y, Wada H, Kanno M, Satoh T. The effects of low-flow sevoflurane and isoflurane anesthesia on renal function in patients with stable moderate renal insufficiency. Anesth Analg. 2001;92(3):650–5.

    Article  CAS  PubMed  Google Scholar 

  64. Litz RJ, Hubler M, Lorenz W, Meier VK, Albrecht DM. Renal responses to desflurane and isoflurane in patients with renal insufficiency. Anesthesiology. 2002;97(5):1133–6.

    Article  CAS  PubMed  Google Scholar 

  65. Weiskopf RB, Eger II EI, Ionescu P, Yasuda N, Cahalan MK, Freire B, et al. Desflurane does not produce hepatic or renal injury in human volunteers. Anesth Analg. 1992;74(4):570–4.

    Article  CAS  PubMed  Google Scholar 

  66. Thapa S, Brull SJ. Succinylcholine-induced hyperkalemia in patients with renal failure: an old question revisited. Anesth Analg. 2000;91(1):237–41.

    CAS  PubMed  Google Scholar 

  67. Ryan DW. Preoperative serum cholinesterase concentration in chronic renal failure. Clinical experience of suxamethonium in 81 patients undergoing renal transplant. Br J Anaesth. 1977;49(9):945–9.

    Article  CAS  PubMed  Google Scholar 

  68. Phillips BJ, Hunter JM. Use of mivacurium chloride by constant infusion in the anephric patient. Br J Anaesth. 1992;68(5):492–8.

    Article  CAS  PubMed  Google Scholar 

  69. Cooper RA, Maddineni VR, Mirakhur RK, Wierda JM, Brady M, Fitzpatrick KT. Time course of neuromuscular effects and pharmacokinetics of rocuronium bromide (Org 9426) during isoflurane anaesthesia in patients with and without renal failure. Br J Anaesth. 1993;71(2):222–6.

    Article  CAS  PubMed  Google Scholar 

  70. Robertson EN, Driessen JJ, Vogt M, De Boer H, Scheffer GJ. Pharmacodynamics of rocuronium 0.3 mg kg(−1) in adult patients with and without renal failure. Eur J Anaesthesiol. 2005;22(12):929–32.

    Article  CAS  PubMed  Google Scholar 

  71. Beauvoir C, Peray P, Daures JP, Peschaud JL, D’Athis F. Pharmacodynamics of vecuronium in patients with and without renal failure: a meta-analysis. Can J Anaesth. 1993;40(8):696–702.

    Article  CAS  PubMed  Google Scholar 

  72. Somogyi AA, Shanks CA, Triggs EJ. The effect of renal failure on the disposition and neuromuscular blocking action of pancuronium bromide. Eur J Clin Pharmacol. 1977;12(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  73. Cronnelly R, Stanski DR, Miller RD, Sheiner LB, Sohn YJ. Renal function and the pharmacokinetics of neostigmine in anesthetized man. Anesthesiology. 1979;51(3):222–6.

    Article  CAS  PubMed  Google Scholar 

  74. Hoke JF, Shlugman D, Dershwitz M, Michalowski P, Malthouse-Dufore S, Connors PM, et al. Pharmacokinetics and pharmacodynamics of remifentanil in persons with renal failure compared with healthy volunteers. Anesthesiology. 1997;87(3):533–41.

    Article  CAS  PubMed  Google Scholar 

  75. Dahaba AA, Oettl K, von Klobucar F, Reibnegger G, List WF. End-stage renal failure reduces central clearance and prolongs the elimination half life of remifentanil. Can J Anaesth. 2002;49(4):369–74.

    Article  PubMed  Google Scholar 

  76. Koehntop DE, Rodman JH. Fentanyl pharmacokinetics in patients undergoing renal transplantation. Pharmacotherapy. 1997;17(4):746–52.

    CAS  PubMed  Google Scholar 

  77. Hill LR, Pichel AC. Respiratory arrest after cadaveric renal transplant. Eur J Anaesthesiol. 2009;26(5):435–6.

    Article  PubMed  Google Scholar 

  78. Bower S, Sear JW. Disposition of alfentanil in patients receiving a renal transplant. J Pharm Pharmacol. 1989;41(9):654–7.

    Article  CAS  PubMed  Google Scholar 

  79. Sear JW. Sufentanil disposition in patients undergoing renal transplantation: influence of choice of kinetic model. Br J Anaesth. 1989;63(1):60–7.

    Article  CAS  PubMed  Google Scholar 

  80. Davis PJ, Stiller RL, Cook DR, Brandom BW, Davin-Robinson KA. Pharmacokinetics of sufentanil in adolescent patients with chronic renal failure. Anesth Analg. 1988;67(3):268–71.

    Article  CAS  PubMed  Google Scholar 

  81. Wiggum DC, Cork RC, Weldon ST, Gandolfi AJ, Perry DS. Postoperative respiratory depression and elevated sufentanil levels in a patient with chronic renal failure. Anesthesiology. 1985;63(6):708–10.

    Article  CAS  PubMed  Google Scholar 

  82. Mazoit JX, Butscher K, Samii K. Morphine in postoperative patients: pharmacokinetics and pharmacodynamics of metabolites. Anesth Analg. 2007;105(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  83. Osborne R, Joel S, Grebenik K, Trew D, Slevin M. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther. 1993;54(2):158–67.

    Article  CAS  PubMed  Google Scholar 

  84. Felden L, Walter C, Harder S, Treede RD, Kayser H, Drover D, et al. Comparative clinical effects of hydromorphone and morphine: a meta-analysis. Br J Anaesth. 2011;107(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  85. Davison SN, Mayo PR. Pain management in chronic kidney disease: the pharmacokinetics and pharmacodynamics of hydromorphone and hydromorphone-3-glucuronide in hemodialysis patients. J Opioid Manag. 2008;4(6):335–6. 9–44.

    PubMed  Google Scholar 

  86. Szeto HH, Inturrisi CE, Houde R, Saal S, Cheigh J, Reidenberg MM. Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure of cancer. Ann Intern Med. 1977;86(6):738–41.

    Article  CAS  PubMed  Google Scholar 

  87. Luciani J, Frantz P, Thibault P, Ghesquierre F, Conseiller C, Cousin MT, et al. Early anuria prevention in human kidney transplantation. Advantage of fluid load under pulmonary arterial pressure monitoring during surgical period. Transplantation. 1979;28(4):308–12.

    Article  CAS  PubMed  Google Scholar 

  88. Carlier M, Squifflet JP, Pirson Y, Gribomont B, Alexandre GP. Maximal hydration during anesthesia increases pulmonary arterial pressures and improves early function of human renal transplants. Transplantation. 1982;34(4):201–4.

    Article  CAS  PubMed  Google Scholar 

  89. Othman MM, Ismael AZ, Hammouda GE. The impact of timing of maximal crystalloid hydration on early graft function during kidney transplantation. Anesth Analg. 2010;110(5):1440–6.

    Article  PubMed  Google Scholar 

  90. Thomsen HS, Lokkegaard H, Munck O. Influence of normal central venous pressure on onset of function in renal allografts. Scand J Urol Nephrol. 1987;21(2):143–5.

    Article  CAS  PubMed  Google Scholar 

  91. Dawidson IJ, Sandor ZF, Coorpender L, Palmer B, Peters P, Lu C, et al. Intraoperative albumin administration affects the outcome of cadaver renal transplantation. Transplantation. 1992;53(4):774–82.

    Article  CAS  PubMed  Google Scholar 

  92. Dawidson IJ, Ar’Rajab A. Perioperative fluid and drug therapy during cadaver kidney transplantation. Clin Transpl. 1992;267–84.

    Google Scholar 

  93. van Valenberg PL, Hoitsma AJ, Tiggeler RG, Berden JH, van Lier HJ, Koene RA. Mannitol as an indispensable constituent of an intraoperative hydration protocol for the prevention of acute renal failure after renal cadaveric transplantation. Transplantation. 1987;44(6):784–8.

    Article  PubMed  Google Scholar 

  94. Tiggeler RG, Berden JH, Hoitsma AJ, Koene RA. Prevention of acute tubular necrosis in cadaveric kidney transplantation by the combined use of mannitol and moderate hydration. Ann Surg. 1985;201(2):246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ciapetti M, di Valvasone S, di Filippo A, Cecchi A, Bonizzoli M, Peris A. Low-dose dopamine in kidney transplantation. Transplant Proc. 2009;41(10):4165–8.

    Article  CAS  PubMed  Google Scholar 

  96. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;(1):CD007594.

    Google Scholar 

  97. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.

    Article  CAS  PubMed  Google Scholar 

  98. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  99. Bagshaw SM, Chawla LS. Hydroxyethyl starch for fluid resuscitation in critically ill patients. Can J Anaesth. 2013;60(7):709–13.

    Article  PubMed  Google Scholar 

  100. Knoll GA, Grabowski JA, Dervin GF, O’Rourke K. A randomized, controlled trial of albumin versus saline for the treatment of intradialytic hypotension. J Am Soc Nephrol. 2004;15(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  101. Akpek E, Kayhan Z, Kaya H, Candan S, Haberal M. Epidural anesthesia for renal transplantation: a preliminary report. Transplant Proc. 1999;31(8):3149–50.

    Article  CAS  PubMed  Google Scholar 

  102. Freir NM, Murphy C, Mugawar M, Linnane A, Cunningham AJ. Transversus abdominis plane block for analgesia in renal transplantation: a randomized controlled trial. Anesth Analg. 2012;115(4):953–7.

    Article  CAS  PubMed  Google Scholar 

  103. Williams M, Milner QJ. Postoperative analgesia following renal transplantation—current practice in the UK. Anaesthesia. 2003;58(7):712–3.

    Article  CAS  PubMed  Google Scholar 

  104. Siskind E, Villa M, Jaimes N, Huntoon K, Alex A, Blum M, et al. Forty-eight hour kidney transplant admissions. Clin Transplant. 2013;27(4):E431–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrikus J. M. Lemmens M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lemmens, H.J.M., Ingrande, J. (2017). Anesthesia and Intraoperative Management of Renal Transplantation. In: Subramaniam, K., Sakai, T. (eds) Anesthesia and Perioperative Care for Organ Transplantation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6377-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6377-5_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6375-1

  • Online ISBN: 978-1-4939-6377-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics