Skip to main content

Emerging Roles of YAP/TAZ in Mechanobiology

  • Chapter
  • First Online:
Molecular and Cellular Mechanobiology

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Understanding mechanotransduction is a major goal in the field of mechanobiology. YAP, and its paralog TAZ, are transcription coactivators at the core of the canonical Hippo signaling pathway. Recent studies have identified YAP/TAZ as both mechano-sensors and -transducers that respond to multiple extracellular mechanical signals and relay them to downstream transcriptional signals to regulate cell functions. In this chapter, we discuss how different types of mechanical cues, including the actin cytoskeleton, substrate rigidity, and external mechanical forces, mediate YAP/TAZ activities. We also discuss some possible mechanosensitive molecular machineries that function upstream of YAP/TAZ to control their mechanotransductive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

HA:

Hyaluronic acid

hESCs:

Human embryonic stem cells

hMSCs :

Human mesenchymal stem cells

Lats:

Large tumor suppressor

ROCK:

Rho-associated coiled-coil-containing protein kinase

TAZ:

PDZ-binding motif

YAP:

Yes associated protein

Mechanotransduction:

Biological processes whereby cells convert mechanical stimuli into intracellular biochemical responses

Focal adhesion (FA):

Adhesion sites for cell attachment to the ECM where intracellular actin filaments can link to ECM proteins through transmembrane proteins such as integrins.

References

  • Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5):1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122(Pt 4):546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry ER, Camargo FD (2013) The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 25(2):247–253

    Article  CAS  PubMed  Google Scholar 

  • Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263

    Article  CAS  PubMed  Google Scholar 

  • Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang CX, Hong WJ (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 286(9):7018–7026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SW, Lim CJ, Guo FS, Tan I, Leung T, Hong WJ (2013) Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J Biol Chem 288(52):37296–37307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung TM, Ganatra MP, Peters EB, Truskey GA (2012) Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am J Physiol Heart Circ Physiol 303(11):H1374–H1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung TM, Ganatra MP, Fu JJ, Truskey GA (2013) The effect of stress-induced senescence on aging human cord blood-derived endothelial cells. Cardiovasc Eng Technol 4(2):220–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Connelly JT, Gautrot JE, Trappmann B, Tan DWM, Donati G, Huck WTS, Watt FM (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 12(7):711–718

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Hameed FM, Yang B, Lee K, Pan CQ, Park S, Sheetz M (2015) Cyclic stretching of soft substrates induces spreading and growth. Nat Commun 6, 6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai XM, She PL, Chi FT, Feng Y, Liu H, Jin DQ, Zhao YQ, Guo XC, Jiang DD, Guan KL, Zhong TP, Zhao B (2013) Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem 288(47):34041–34051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeRan M, Yang J, Shen C-H, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B, Bardeesy N, Liu J, Wu X (2014) Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9(2):495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diepenbruck M, Waldmeier L, Ivanek R, Berninger P, Arnold P, van Nimwegen E, Christofori G (2014) Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci 127(7):1523–1536

    Article  CAS  PubMed  Google Scholar 

  • DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183

    Article  CAS  PubMed  Google Scholar 

  • Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR, Janody F (2011) Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in drosophila. Development 138(11):2337–2346

    Article  CAS  PubMed  Google Scholar 

  • Genevet A, Tapon N (2011) The Hippo pathway and apico-basal cell polarity. Biochem J 436:213–224

    Article  CAS  PubMed  Google Scholar 

  • George NM, Day CE, Boerner BP, Johnson RL, Sarvetnick NE (2012) Hippo signaling regulates pancreas development through inactivation of Yap. Mol Cell Biol 32(24):5116–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grijalva JL, Huizenga M, Mueller K, Rodriguez S, Brazzo J, Camargo F, Sadri-Vakili G, Vakili K (2014) Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am J Physiol Gastrointest Liver Physiol 307(2):G196–G204

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Zhang Y, Wang Y, Ye R, Qiu J, Zhao Z, Li J (2014) Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell Signal 26(2):186–191

    Article  CAS  PubMed  Google Scholar 

  • Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332(6028):458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23(13):1181–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497(7450):507–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imajo M, Ebisuya M, Nishida E (2015) Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol 17(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Kaneko K, Ito M, Naoe Y, Lacy-Hulbert A, Ikeda K (2014) Integrin alpha v in the mechanical response of osteoblast lineage cells. Biochem Biophys Res Commun 447(2):352–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KM, Choi YJ, Hwang J-H, Kim AR, Cho HJ, Hwang ES, Park JY, Lee S-H, Hong J-H (2014) Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One 9(3), e92427

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M-J, Byun MR, Furutani-Seiki M, Hong J-H, Jung H-S (2014) YAP and TAZ regulate skin wound healing. J Investig Dermatol 134(2):518–525

    Article  CAS  PubMed  Google Scholar 

  • Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251

    Article  PubMed  PubMed Central  Google Scholar 

  • Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M (2014) YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 588(16):2663–2670

    Article  CAS  PubMed  Google Scholar 

  • Mahoney JE, Mori M, Szymaniak AD, Varelas X, Cardoso WV (2014) The Hippo pathway effector Yap controls patterning and differentiation of airway epithelial progenitors. Dev Cell 30(2):137–150

    Article  CAS  PubMed  Google Scholar 

  • Mana-Capelli S, Paramasivam M, Dutta S, McCollum D (2014) Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell 25(10):1676–1685

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann JM, Lam RH, Weng S, Sun Y, Fu J (2012) A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12(4):731–740

    Article  CAS  PubMed  Google Scholar 

  • Maruthamuthu V, Aratyn-Schaus Y, Gardel M (2010) Conserved F-actin dynamics and force transmission at cell adhesions. Curr Opin Cell Biol 22(5):583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  CAS  PubMed  Google Scholar 

  • Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, Parlato MB, Hsiao C, Palecek SP, Chang Q, Murphy WL, Kiessling LL (2014) Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci U S A 111(38):13805–13810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  • Pathak MM, Nourse JL, Tran T, Hwe J, Arulmoli J, Le DTT, Bernardis E, Flanagan LA, Tombola F (2014) Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc Natl Acad Sci U S A 111(45):16148–16153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelissier FA, Garbe JC, Ananthanarayanan B, Miyano M, Lin C, Jokela T, Kumar S, Stampfer MR, Lorens JB, LaBarge MA (2014) Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors. Cell Rep 7(6):1926–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev 94(4):1287–1312

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, Yu J, Yeh R-F, Hebrok M, Ramalho-Santos M (2012) Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet 21(9):2054–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan T, Xu Y, Qin Z, Robichaud P, Betcher S, Calderone K, He T, Johnson TM, Voorhees JJ, Fisher GJ (2014) Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma impact on keratinocyte proliferation and stromal cell activation. Am J Pathol 184(4):937–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauskolb C, Sun S, Sun G, Pan Y, Irvine Kenneth D (2014) Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 158(1):143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy P, Deguchi M, Cheng Y, Hsueh AJW (2013) Actin cytoskeleton regulates Hippo signaling. PLoS One 8(9), e73763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz U, Gardel M (2012) United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci 125(Pt 13):3051–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, Lim D-S, Pan D, Sadoshima J (2014) A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 5:3315

    PubMed  PubMed Central  Google Scholar 

  • Shao Y, Sang J, Fu J (2015) On human pluripotent stem cell control: the rise of 3D bioengineering and mechanobiology. Biomaterials 52:26–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16(4):357–366

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YB, Aw Yong KM, Villa-Diaz LG, Zhang XL, Chen WQ, Philson R, Weng SN, Xu HX, Krebsbach PH, Fu JP (2014a) Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater 13(6):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Yong KMA, Villa-Diaz LG, Zhang X, Chen W, Philson R, Weng S, Xu H, Krebsbach PH, Fu J (2014b) Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater 13(6):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varelas X (2014) The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141(8):1614–1626

    Article  CAS  PubMed  Google Scholar 

  • Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL (2008) TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10(7):837–848

    Article  CAS  PubMed  Google Scholar 

  • Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 19(6):831–844

    Article  CAS  PubMed  Google Scholar 

  • Visser-Grieve S, Zhou ZH, She YM, Huang H, Cyr TD, Xu T, Yang XL (2011) LATS1 tumor suppressor is a novel actin-binding protein and negative regulator of actin polymerization. Cell Res 21(10):1513–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wackerhage H, Del Re DP, Judson RN, Sudol M, Sadoshima J (2014) The Hippo signal transduction network in skeletal and cardiac muscle. Sci Signal 7(337):re4

    Article  PubMed  Google Scholar 

  • Wada KI, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138(18):3907–3914

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Du Y-C, Zhou X-J, Liu H, Tang S-C (2014) The dual functions of YAP-1 to promote and inhibit cell growth in human malignancy. Cancer Metastasis Rev 33(1):173–181

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Fannin J, Rice KM, Wang B, Blough ER (2011) Effect of aging on cellular mechanotransduction. Ageing Res Rev 10(1):1–15

    Article  PubMed  Google Scholar 

  • Xie Q, Chen J, Feng H, Peng S, Adams U, Bai Y, Huang L, Li J, Huang J, Meng S, Yuan Z (2013) YAP/TEAD-mediated transcription controls cellular senescence. Cancer Res 73(12):3615–3624

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13(6):645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D (2013) Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor merlin/NF2. Cell 154(6):1342–1355

    Article  CAS  PubMed  Google Scholar 

  • Yu F-X, Guan K-L (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Tumaneng K, Guan K-L (2011a) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13(8):877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei QY, Guan KL (2011b) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25(1):51–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Li L, Wang L, Wang C-Y, Yu J, Guan K-L (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26(1):54–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Fallon TR, Saladi SV, Pardo-Saganta A, Villoria J, Mou H, Vinarsky V, Gonzalez-Celeiro M, Nunna N, Hariri LP, Camargo F, Ellisen LW, Rajagopal J (2014) Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell 30(2):151–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong WL, Zhang WG, Wang SY, Qin JH (2013) Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS One 8(4), e61283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Our research work is supported by the National Science Foundation (CMMI 1129611 and CBET 1149401), the National Institutes of Health (R21 HL114011, R21 EB017078, and R01 EB019436), the American Heart Association (12SDG12180025), and the Department of Mechanical Engineering at the University of Michigan, Ann Arbor. The Lurie Nanofabrication Facility at the University of Michigan, a member of the National Nanotechnology Infrastructure Network (NNIN) funded by the National Science Foundation, is acknowledged for support in microfabrication. Finally, we extend our apologies to all colleagues in the field whose work we are unable to discuss formally because of space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Sun, Y., Shao, Y., Xue, X., Fu, J. (2016). Emerging Roles of YAP/TAZ in Mechanobiology. In: Chien, S., Engler, A., Wang, P. (eds) Molecular and Cellular Mechanobiology. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5617-3_4

Download citation

Publish with us

Policies and ethics