Skip to main content

Heart Valve Mechanobiology in Development and Disease

  • Chapter
  • First Online:
Molecular and Cellular Mechanobiology

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Heart valves reside in one of the most mechanically demanding environments within the body, experiencing over 100,000 cycles daily of a combination of biomechanical and hemodynamic forces. The forces applied to heart valves are critical for proper valvulogenesis and normal valve function and maintenance, but disruptions in the mechanical environment can lead to developmental defects and disease. In this chapter, we review current understanding of the roles of hemodynamic forces in valve development, from the initiation of valvulogenesis by cardiac jelly formation, to the invasion of cells into the cardiac cushion through the process of endothelial-to-mesenchymal transition (EndMT) and subsequent remodeling of the extracellular matrix to give rise to the tri-layered structure of developed valves. We also review growing evidence that implicates shear stress, cyclic strain, and matrix mechanics in regulating the initiation and progression of calcific aortic valve disease (CAVD), the most common adult valve disease for which there currently is no medical therapy. An improved understanding of how mechanical forces regulate valve development and disease is expected to help identify therapeutic targets for the treatment of adult valve diseases and to guide the design of living tissue replacement valves for patients with congenital valve defects or diseased valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikawa E, Whittaker P, Farber M, Mendelson K, Padera RF, Aikawa M et al (2006) Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation 113(10):1344–1352

    Article  PubMed  Google Scholar 

  • Bäck M, Gasser TC, Michel JB, Caligiuri G (2013) Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res 99:232–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Balachandran K, Alford PW, Wylie-Sears J, Goss JA, Grosberg A, Bischoff J et al (2011a) Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci 108(50):19943–19948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balachandran K, Bakay MA, Connolly JM, Zhang X, Yoganathan AP, Levy RJ (2011b) Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann Thorac Surg 92(1):147–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Balachandran K, Konduri S, Sucosky P, Jo H, Yoganathan AP (2006) An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann Biomed Eng 34(11):1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Balachandran K, Sucosky P, Jo H, Yoganathan AP (2009) Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol 296(3):H756–H764

    Article  CAS  PubMed  Google Scholar 

  • Balachandran K, Sucosky P, Jo H, Yoganathan AP (2010) Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol 177(1):49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balachandran K, Sucosky P, Yoganathan AP (2011c) Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam 2011:263870

    Article  PubMed  PubMed Central  Google Scholar 

  • Banjo T, Grajcarek J, Yoshino D, Osada H, Miyasaka KY, Kida YS et al (2013) Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. Nat Commun 4(May):1978

    PubMed  PubMed Central  Google Scholar 

  • Bartman T, Walsh EC, Wen KK, McKane M, Ren J, Alexander J et al (2004) Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol 2(5), E129

    Article  PubMed  PubMed Central  Google Scholar 

  • Beis D, Bartman T, Jin S-W, Scott IC, D’Amico LA, Ober EA et al (2005) Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132(18):4193–4204

    Article  CAS  PubMed  Google Scholar 

  • Blaser MC, Zhou YQ, Falahatpisheh A, Zhang H, Heximer S, Kheradvar A et al (2015) Npr2 deficiency drives aortic valve stenosis, bicuspid aortic valves, ascending aortic dilation, and cardiac dysfunction while preempting aortic valve regurgitation in mice. In: North American Vascular Biology Organization Vascular Biology 2015 Meeting, Hyannis, MA

    Google Scholar 

  • Bouchareb R, Boulanger MC, Fournier D, Pibarot P, Messaddeq Y, Mathieu P (2014) Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. J Mol Cell Cardiol 67:49–59

    Article  CAS  PubMed  Google Scholar 

  • Butcher JT, Markwald RR (2007) Valvulogenesis: the moving target. Philos Trans R Soc Lond B Biol Sci 362(1484):1489–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher JT, McQuinn TC, Sedmera D, Turner D, Markwald RR (2007) Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. Circ Res 100(10):1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Butcher JT, Nerem RM (2006) Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng 12(4):905–915

    Article  CAS  PubMed  Google Scholar 

  • Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H et al (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G et al (2014) The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS One 9(5):1–7

    Article  Google Scholar 

  • Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11(7):1085–1096

    Article  PubMed  Google Scholar 

  • Chen JH, Chen WLK, Sider KL, Yip CYY, Simmons CA (2011) β-catenin mediates mechanically regulated, transforming growth factor-β1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 31(3):590–597

    Google Scholar 

  • Chen JH, Simmons CA (2011) Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res 108(12):1510–1524

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Yip CYY, Sone ED, Simmons CA (2009) Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol 174(3):1109–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MB, Srigunapalan S, Wheeler AR, Simmons CA (2013) A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell–cell interactions. Lab Chip 13(13):2591

    Article  CAS  PubMed  Google Scholar 

  • Combs MD, Yutzey KE (2009) Heart valve development: regulatory networks in development and disease. Circ Res 105(5):408–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S et al (2009) Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation 120(4):334–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN et al (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274

    Article  CAS  PubMed  Google Scholar 

  • Gould ST, Matherly EE, Smith JN, Heistad DD, Anseth KS (2014) The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation. Biomaterials 35(11):3596–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould ST, Srigunapalan S, Simmons CA, Anseth KS (2013) Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ Res 113(2):186–197

    Article  CAS  PubMed  Google Scholar 

  • Groenendijk BCW, Hierck BP, Vrolijk J, Baiker M, Pourquie MJBM, Gittenberger-De Groot AC et al (2005) Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo. Circ Res 96(12):1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Guerraty MA, Grant GR, Karanian JW, Chiesa OA, Pritchard WF, Davies PF (2010) Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-gamma pathway activation in swine aortic valve endothelium. Arterioscler Thromb Vasc Biol 30(2):225–231

    Article  CAS  PubMed  Google Scholar 

  • Heckel E, Boselli F, Roth S, Krudewig A, Belting H-G, Charvin G et al (2015) Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr Biol 25:1354–1361

    Article  CAS  PubMed  Google Scholar 

  • Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73(73):29–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900

    Article  PubMed  Google Scholar 

  • Holliday CJ, Ankeny RF, Jo H, Nerem RM (2011) Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. Am J Physiol Heart Circ Physiol 301(3):H856–H867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson JD, Venkataraman R, Baudenbacher FJ, David W (2012) Intracellular Ca2+ accumulation is strain-dependent and correlates with apoptosis in aortic valve fibroblasts. J Biomech 45(5):888–894

    Google Scholar 

  • Hutcheson JD, Chen J, Sewell-Loftin MK, Ryzhova LM, Fisher CI, Su YR et al (2013) Cadherin-11 regulates cell-cell tension necessary for calcific nodule formation by valvular myofibroblasts. Arterioscler Thromb Vasc Biol 33:114–120

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Umetani N, Hisada T, Sugiura S (2013) Bicuspid aortic valves undergo excessive strain during opening: a simulation study. J Thorac Cardiovasc Surg 145(6):1570–1576

    Article  PubMed  Google Scholar 

  • Kennedy JA, Hua X, Mishra K, Murphy GA, Rosenkranz AC, Horowitz JD (2009) Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by nitric oxide donors. Eur J Pharmacol 602(1):28–35

    Article  CAS  PubMed  Google Scholar 

  • Ku C-H, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM et al (2006) Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71(3):548–556

    Article  CAS  PubMed  Google Scholar 

  • Li C, Xu S, Gotlieb AI (2013) The progression of calcific aortic valve disease through injury, cell dysfunction, and disruptive biologic and physical force feedback loops. Cardiovasc Pathol 22(1):1–8

    Article  PubMed  Google Scholar 

  • Lindroos M, Kupari M, Heikkilä J, Tilvis R (1993) Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol 21(5):1220–1225

    Article  CAS  PubMed  Google Scholar 

  • Lindsey SE (2014) Mechanical regulation of cardiac development. Front Physiol 5(August):1–15

    Google Scholar 

  • Lindsey SE, Butcher JT (2011) The cycle of form and function in cardiac valvulogenesis. Aswan Hear Cent Sci Pract Ser 2011(2):10

    Article  Google Scholar 

  • Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J (2009) Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-notch signaling pathways. Arterioscler Thromb Vasc Biol 29(12):2125–2131

    Article  CAS  PubMed  Google Scholar 

  • Mathieu P, Boulanger M-C, Bouchareb R (2014) Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert Rev Cardiovasc Ther 12(7):851–862

    Google Scholar 

  • Merryman WD, Youn I, Lukoff HD, Krueger PM, Guilak F, Hopkins RA, Sacks MS (2006) Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am J Physiol Heart Circ Physiol. 290(1):H224–31

    Google Scholar 

  • Merryman WD, Liao J, Parekh A, Candiello JE, Lin H, Sacks MS. (2007a) Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells. Tissue Eng. 13(9):2281–2289

    Google Scholar 

  • Merryman WD, Lukoff HD, Long RA, Engelmayr GC Jr, Hopkins RA, Sacks MS (2007b) Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol 16(5):268–276

    Google Scholar 

  • Mohamed SA, Radtke A, Saraei R, Bullerdiek J, Sorani H, Nimzyk R et al (2012) Locally different endothelial nitric oxide synthase protein levels in ascending aortic aneurysms of bicuspid and tricuspid aortic valve. Cardiol Res Pract 2012:165957

    PubMed  PubMed Central  Google Scholar 

  • Mohler ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103(11):1522–1528

    Article  PubMed  Google Scholar 

  • Moraes C, Likhitpanichkul M, Lam CJ, Beca BM, Sun Y, Simmons CA (2013) Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr Biol (Camb) 5(4):673–680

    Article  CAS  Google Scholar 

  • Nishimura RA (2002) Aortic valve disease. Circulation 106(7):770–772

    Article  PubMed  Google Scholar 

  • Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD (1994) Characterization of the early lesion of “degenerative” valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90(2):844–853

    Article  CAS  PubMed  Google Scholar 

  • Parvin Nejad S, Blaser MC, Santerre JP, Caldarone CA, Simmons CA (2016) Biomechanical conditioning of tissue engineered heart valves: too much of a good thing? Adv Drug Deliv Rev 96:161–175

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Carrion K, Hollands A, Hinton A, Gallegos T, Dyo J et al (2015) The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. FASEB J 29:1859–1868

    Google Scholar 

  • Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335

    Article  CAS  PubMed  Google Scholar 

  • Peterson LM, Jenkins MW, Gu S, Barwick L, Watanabe M, Rollins AM (2012) 4D shear stress maps of the developing heart using Doppler optical coherence tomography. Biomed Opt Express 3(11):3022

    Article  PubMed  PubMed Central  Google Scholar 

  • Pho M, Lee W, Watt DR, Laschinger C, Simmons CA, McCulloch CA (2008) Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol 294(4):H1767–H1778

    Article  CAS  PubMed  Google Scholar 

  • Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG et al (2001) Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis 10(3):371–374

    CAS  PubMed  Google Scholar 

  • Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD et al (2011) Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation 124(16):1783–1791

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M et al (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107(17):2181–2184

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards J, El-Hamamsy I, Chen S, Sarang Z, Sarathchandra P, Yacoub MH et al (2013) Side-specific endothelial-dependent regulation of aortic valve calcification. Am J Pathol 182(5):1922–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riem Vis PW, Kluin J, Sluijter JPG, van Herwerden LA, Bouten CVC (2011) Environmental regulation of valvulogenesis: implications for tissue engineering. Eur J Cardiothorac Surg 39(1):8–17

    Article  PubMed  Google Scholar 

  • Savolainen SM, Foley JF, Elmore SA (2009) Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5. Toxicol Pathol 37(4):395–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Sewell-Loftin M-K, Brown CB, Baldwin HS, Merryman WD (2012) A novel technique for quantifying mouse heart valve leaflet stiffness with atomic force microscopy. J Heart Valve Dis 21(4):513–520

    PubMed  PubMed Central  Google Scholar 

  • Sider KL, Blaser MC, Simmons CA (2011) Animal models of calcific aortic valve disease. Int J Inflam 2011:364310

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmons CA, Grant GR, Manduchi E, Davies PF (2005) Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res 96(7):792–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siu SC, Silversides CK (2010) Bicuspid aortic valve disease. J Am Coll Cardiol 55(25):2789–2800

    Article  PubMed  Google Scholar 

  • Stephens EH, Chu CK, Grande-Allen KJ (2008) Valve proteoglycan content and glycosaminoglycan fine structure are unique to microstructure, mechanical load and age: relevance to an age-specific tissue-engineered heart valve. Acta Biomater 4(5):1148–1160

    Article  CAS  PubMed  Google Scholar 

  • Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP (2008) Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-dependent pathway. Arterioscler Thromb Vasc Biol 29(2):254–260

    Article  PubMed  Google Scholar 

  • Sun L, Chandra S, Sucosky P (2012) Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS One 7(10), e48843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto K, Pastuszko P, del Alamo JC, Lasheras J, Nigam V (2013) Bicuspid aortic valves experience increased strain as compared to tricuspid aortic valves. World J Pediatr Congenit Heart Surg 4(4):362–366

    Article  PubMed  Google Scholar 

  • Theodoris CV, Li M, White MPP, Liu L, He D, Pollard KSS et al (2015) Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160(6):1072–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thubrikar MJ (1990) Mechanical stresses in the aortic valve. CRC Press, Boca Raton, FL

    Google Scholar 

  • Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M et al (2009) Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7(11):12–14

    Article  Google Scholar 

  • Vesely I, Noseworthy R (1992) Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J Biomech 25(1):101–113

    Article  CAS  PubMed  Google Scholar 

  • Warnock JN, Nanduri B, Pregonero Gamez CA, Tang J, Koback D, Muir WM et al (2011) Gene profiling of aortic valve interstitial cells under elevated pressure conditions: modulation of inflammatory gene networks. Int J Inflam 2011:176412

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiler M, Hwai Yap C, Balachandran K, Muralidhar P, Yoganathan AP, Padala M et al (2011) Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. J Biomech 44(8):1459–1465

    Article  PubMed  PubMed Central  Google Scholar 

  • Weston MW, LaBorde DV, Yoganathan AP (1999) Estimation of the shear stress on the surface of an aortic valve leaflet. Ann Biomed Eng 27(4):572–579

    Article  CAS  PubMed  Google Scholar 

  • Wirrig EE, Yutzey KE (2014) Conserved transcriptional regulatory mechanisms in aortic valve development and disease. Arterioscler Thromb Vasc Biol 34:737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyss K, Yip CYY, Mirzaei Z, Jin X, Chen JH, Simmons CA (2012) The elastic properties of valve interstitial cells undergoing pathological differentiation. J Biomech 45(5):882–887

    Article  PubMed  Google Scholar 

  • Yalcin HC, Shekhar A, McQuinn TC, Butcher JT (2011) Hemodynamic patterning of the avian atrioventricular valve. Dev Dyn 240(1):23–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap CH, Kim H-S, Balachandran K, Weiler M, Haj-Ali R, Yoganathan AP et al (2010) Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am J Physiol Heart Circ Physiol 298(5):395–405

    Article  Google Scholar 

  • Yap CH, Saikrishnan N, Tamilselvan G, Vasilyev N, Yoganathan AP (2012a) The congenital bicuspid aortic valve can experience high frequency unsteady shear stresses on its leaflet surface. Am J Physiol Heart Circ Physiol 303:H721–H731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap CH, Saikrishnan N, Yoganathan AP (2012b) Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol 11:231–244

    Article  PubMed  Google Scholar 

  • Yip CYY, Blaser MC, Mirzaei Z, Zhong X, Simmons CA (2011) Inhibition of pathological differentiation of valvular interstitial cells by C-type natriuretic peptide. Arterioscler Thromb Vasc Biol 31(8):1881–1889

    Article  CAS  PubMed  Google Scholar 

  • Yip CYY, Chen JH, Zhao R, Simmons CA (2009) Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol 29(6):936–942

    Article  CAS  PubMed  Google Scholar 

  • Yip CYY, Simmons CA (2011) The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol 20(3):177–182

    Article  PubMed  Google Scholar 

  • Yutzey KE, Demer LL, Body SC, Huggins GS, Towler DA, Giachelli CM et al (2014) Calcific aortic valve disease: a consensus summary from the alliance of investigators on calcific aortic valve disease. Arterioscler Thromb Vasc Biol 34(11):2387–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Xiao Z, Diamond SL (1999) Shear stress induction of C-type natriuretic peptide (CNP) in endothelial cells is independent of NO autocrine signaling. Ann Biomed Eng 27(4):419–426

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Sider KL, Simmons CA (2011) Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater 7(3):1220–1227

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Simmons Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Zhong, A., Simmons, C.A. (2016). Heart Valve Mechanobiology in Development and Disease. In: Chien, S., Engler, A., Wang, P. (eds) Molecular and Cellular Mechanobiology. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5617-3_12

Download citation

Publish with us

Policies and ethics