Skip to main content

Hylobatid Evolution in Paleogeographic and Paleoclimatic Context

  • Chapter
  • First Online:
Evolution of Gibbons and Siamang

Abstract

East and Southeast Asia has one of Earth’s most complex geo-climatic histories. The region formed in a multi-step process lasting from the Paleozoic to nearly the end of the Oligocene . A profound event in the area’s history was the joining of the Afro-Arabian and Eurasian tectonic plates in the early Miocene , which enabled for the first time in history substantial exchanges of flora and fauna across the Gomphotherium Landbridge . The warm and humid climate of the Eocene had facilitated a far northerly expansion of megathermal forests, which African stem hominoids probably utilized on their migration out of Africa, through the Afro-Arabian terrestrial corridor and into Europe and Asia. Although Earth’s temperature had continuously decreased after the Eocene climatic maximum, warm-wet conditions prevailed once again during the early Miocene , which likely contributed to hominoid diversification and radiation at this time. In Asia, primate-friendly ecological conditions may have spurred the divergence of stem hylobatids from Asian stem hominoids. Following the middle Miocene climatic optimum , however, the climate changed dramatically. Average global temperature decreased while aridity increased leading to more patch-distributed forest habitats, interspersed with fast-growing grasslands. Asia’s flora and fauna were further impacted by an increasing seasonality due to intensifying monsoon seasons after the East and South Asian monsoon systems became coupled by ~17 mya. In the aftermath of the Eocene Indian-Eurasian plate collision, the Himalayan Plateau significantly rose in height at 15 mya and then again in 13 mya. Each height increase likely caused an increase in monsoon seasonality. While several Afro-Eurasian hominoids went extinct during Miocene times due to climate changes, stem hylobatids prooved to be rather resilient and adaptable: By the end of the Miocene ~6 mya, the lineage had diversified into the four genera Nomascus , Symphalangus , Hoolock , and Hylobates known today. We propose that stem hylobatids responded to climatic and ecological changes with strategies that decreased energy expenditure, and suggest that even before the emergence of the four hylobatid genera, stem hylobatids had increased their foraging efficiency by optimizing brachiation to afford them access to the terminal-branch feeding niche, and had reduced net energy demands by a decrease in body size and breeding female group size. These adaptations allowed Miocene stem hylobatids to flourish when larger bodied stem hominoids perished. As the Miocene climate deteriorated and tropical forests became compressed and fragmented, some hylobatid populations may have retreated to, or were trapped in, the climatically sheltered, deep mountain valleys of the ancient Hengduan Mountains where they, relatively unscathed, evolved into distinct lineages. The Hengduan Mountain valleys may have functioned as refugia for stem hylobatids, because the valley bottoms microclimate was less seasonal and more temperate-like. Isolation of populations was facilitated by the steepness of the Hengduan Mountains and the large rivers that drain the Tibetan Plateau and Southern Himalayas. An initial speciation and probable radiation wave, within the genera Nomascus and Hylobates , was prompted by a short period of warmer global climate during the middle Pliocene . This warmer climate led to less ocean water trapped in ice sheets and a corresponding increase in sea level of about 22 ± 10 m above current sea-levels. Island formation during this time was probably responsible for some diversification within hylobatids because proposed speciation times of Hainan gibbons, as well as Kloss gibbons and the separation of Bornean and Javan gibbons, coincide with times of relatively high sea-level stands. During the Pleistocene glaciation-interglaciation cycles a second speciation wave within Nomascus and Hylobates occurred, but this is tentatively unrelated to changing sea levels or island formation, but rather may have been a consequence of geographic separation by large paleorivers . During times of glaciations, Sundaland was a large landmass dissected by large rivers, several of which have persisted until today. Rivers continue to represent important barriers to hylobatid distribution and species separation, for example in crested gibbons, who radiated from a proposed northern latitude southward, and are now separated by large rivers. In conclusion, hylobatid evolution has been complex and inextricably linked to geologic events, which included mountain building and the formation of isolated valleys, such as those of the southern Himalayas; sea-level changes, and the creation of islands; as well Asia’s great rivers, which since the Pleistocene have played a major role in separating hylobatid populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We agree with Chaplin (2005: 528) to follow Zhao and Salter’s (1986) suggestion that if Chinese names are translated they should not be contracted to less than two characters, for example, the “Tian Shan Mountains” is preferable to “Tian Mountains” even though the Chinese word “Shan” is best translated as Mountain.

References

  • Aifa T, Feinberg H, Derder EM (2003) Magnetostratigraphic constraints on the duration of the marine communications interruption in the Western Mediterranean during the upper Messinian. Geodiversitas 25:617–631

    Google Scholar 

  • Ali JR, Aitchison JC (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci Rev 88:145–166

    Article  Google Scholar 

  • Andrews P, Kelley J (2007) Middle Miocene dispersals of apes. Folia Primatol 78:328–343

    Article  PubMed  Google Scholar 

  • Bard E (2001) Comparison of alkenone estimates with other paleotemperature proxies. Geochem Geophys Geosy 2:1002

    Article  Google Scholar 

  • Batchelor BC (1979) Geological characteristics of certain coastal and offshore placers as essential guides for tin exploration in Sundaland. SE Asia Geol Soc Malaysia Bull 11:283–313

    Google Scholar 

  • Benton MJ (2010) The origins of modern biodiversity on land. Phil Trans R Soc 365:3667–3679

    Article  Google Scholar 

  • Bernor RL, Lipscomb D (1995) A consideration of old world Hipparionine horse phylogeny and global a biotic processes. In: Vrba ES, Denton GH, Partridge TC, Burckle LH (eds) Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Connecticut, p 164

    Google Scholar 

  • Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R et al (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  PubMed  Google Scholar 

  • Bird MI, Taylor D, Hunt C (2005) Palaeo environments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quat Sci Rev 24:2228–2242

    Article  Google Scholar 

  • Buerki S, Forest F, Alvarez N (2014) Proto-South-East Asia as a trigger of early angiosperm diversification. Bot J Linn Soc 174:326–333

    Article  Google Scholar 

  • Cannon CH, Morley RJ, Bushe ABG (2009) The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc Natl Acad Sci 109:11188–11193

    Article  Google Scholar 

  • Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2007) Understanding the adaptive value of diagonal-sequence gaits in primates: a comment on Shapiro and Raichlen 2005. Am J Phys Anthropol 133:822–825

    Article  PubMed  Google Scholar 

  • Chaplin G (2005) Physical geography of the Gaoligong Shan area of southwest China in relation to biodiversity. Proc Calif Acad Sci 56(27/37):527

    Google Scholar 

  • Chatterjee HJ (2006) Phylogeny and biogeography of gibbons: a dispersal-vicariance analysis. Int J Primatol 27:699–712

    Article  Google Scholar 

  • Chatterjee HJ (2009) Evolutionary relationships among the hylobatids: a biogeographic perspective. In: Lappan S, Whittaker DJ (eds) The hylobatids: new perspectives on small ape socioecology and population biology. Springer, New York, pp 13–36

    Google Scholar 

  • Chatterjee HJ (2016) The role of historical and fossil records in predicting changes in the spatial distribution of hylobatids. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 43–54

    Google Scholar 

  • Chung SL, Lo CH, Lee TY, Zhang Y, Xie Y, Li X et al (1998) Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature 394:769–773

    Article  CAS  Google Scholar 

  • Clark PU, Alley RB, Pollard D (1999) Northern Hemisphere ice-sheet influences on global climate change. Science 286:1104–1111

    Article  CAS  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al (2009) The last glacial maximum. Science 325:710–714

    Article  CAS  PubMed  Google Scholar 

  • Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1:875–880

    Article  CAS  Google Scholar 

  • Corlett RT (ed) (2014) The ecology of tropical East Asia, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Crepet WL (2000) Progress in understanding angiosperm history, success, and relationships: Darwin’s abominably ‘perplexing phenomenon’. Proc Natl Acad Sci 97:12939–12941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronquist A (ed) (1988) The evolution and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Dagosto M (2007) The postcranial morphotype of primates. Primate origins: adaptations and evolution. Springer, New York, pp 489–534

    Chapter  Google Scholar 

  • Dilcher D (2000) Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. Proc Natl Acad Sci 97:7030–7036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Liu T, Rutter NW, Yu Z, Guo Z, Zhu R (1995) Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quat Res 44:149–159

    Article  Google Scholar 

  • Dring J, McCarthy C, Whitten A (1990) The terrestrial herpetofauna of the Mentawai Islands, Indonesia. Indo-Malayan Zool 6:119–132

    Google Scholar 

  • Eriksson O, Friis EM, Löfgren P (2000) Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. Am Nat 156:47–58

    Article  PubMed  Google Scholar 

  • Eronen JT, Ataabadi MM, Micheels A, Karme A, Bernor RL, Fortelius M (2009) Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proc Natl Acad Sci 106:11867–11871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleagle JG (ed) (2013) Primate adaptation and evolution, 3rd edn. Academic Press Elsevier, Amsterdam

    Google Scholar 

  • Flohn H (1968) Contributions to a meteorology of the Tibetan Highlands. J Atmos Sci 130

    Google Scholar 

  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctica ice sheet development, deep ocean circulation and global carbon cycling. Paleogeogr Paleoclimatol Paelaeocol 108:537–555

    Article  Google Scholar 

  • Fluteau F, Ramstein G, Besse J (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J Geophys Res: Atmospheres 104:11995–12018

    Article  Google Scholar 

  • Foster GL, Rohling EJ (2013) Relationship between sea level and climate forcing by CO2 on geological timescales. Proc Natl Acad Sci 110:1209–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fronval T, Jansen E (1997) Eemian and early Weichselian (140–60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions. Paleoceanography 12:443–462

    Article  Google Scholar 

  • Garcia F, Conesa G, Munch P, Cornee JJ, Saint Martin JP, Andre JP (2004) Evolution of Melilla-Nador basin (NE Morocco) littoral environments during late Messinian between 6.0 and 5.77 Ma. Geobios 37:23–36

    Article  Google Scholar 

  • Garzione CN, Ikari MJ, Basu AR (2005) Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in northeastern Tibet from Nd isotopes: Implications for tectonic forcing of climate. Geol Soc Am Bull 117:1156–1166

    Article  Google Scholar 

  • Geissmann T (2007) Status reassessment of the gibbons: Results of the Asian Primate Red List Workshop 2006. Gibbon J 3:5–15

    Google Scholar 

  • Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Miss Bot Gard 86:373–406

    Article  Google Scholar 

  • Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX et al (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416:159–163

    Article  CAS  PubMed  Google Scholar 

  • Hall R (1997) Cenozoic plate tectonic reconstructions of SE Asia. Geol Soc 126:11–23

    Article  CAS  Google Scholar 

  • Hanebuth T, Stattegger K, Grootes PM (2000) Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288:1033–1035

    Article  CAS  PubMed  Google Scholar 

  • Haq BU, Worsley TR, Burckle LH, Douglas RG, Keigwin LD, Opdyke ND et al (1980) Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events. Geology 8:427–431

    Article  CAS  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  CAS  PubMed  Google Scholar 

  • Harris N (2006) The elevation history of the Tibetan Plateau and its implication for the Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 241:4–15

    Google Scholar 

  • Harrison T, Ji X, Zheng L (2008) Renewed investigations at the late Miocene hominoid locality of Leilao, Yunnan China. Am J Phys Anthropol 135(S46):113

    Google Scholar 

  • Harzhauser M (2007) Oligocene and Aquitanian gastropod faunas from the Sultanate of Oman and their biogeographic implications for the early western Indo-Pacific. Palaeontographica 280:75–121

    Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Article  Google Scholar 

  • Harzhauser M, Piller WE, Steininger FF (2002) Circum-Mediterranean Oligo-Miocene biogeographic evolution—The gastropods’ point of view. Palaeogeogr Palaeoclimatol Palaeoecol 183:103–133

    Article  Google Scholar 

  • Harzhauser M, Kroh A, Mandic O, Piller WE, Gröhlich U, Reuter M, Berning B (2007) Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zool Anz 246:241–256

    Article  Google Scholar 

  • Hay WW (1996) Tectonics and climate. Geol Rundsch 85:409–437

    Article  Google Scholar 

  • Haywood AM, Dowsett HJ, Valdes PJ, Lunt DJ, Francis JE, Sellwood BW (2009) Introduction. Pliocene climate, processes and problems. Philos Trans R Soc A 367:3–17

    Article  Google Scholar 

  • Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229

    Article  CAS  PubMed  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol Conserv 142:14–23

    Article  Google Scholar 

  • Hodell DA, Benson RH, Kent DV, Boersma A, Bied RE (1994) Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Salé Briqueterie (northwestern Morocco): a high-resolution chronology for the Messinian stage. Paleoceanography 9:835–855

    Article  Google Scholar 

  • Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438:483–487

    Article  CAS  PubMed  Google Scholar 

  • Izart A, Kemal BM, Malod JA (1994) Seismic stratigraphy and subsidence evolution of the northwest Sumatra fore-arc basin. Mar Geol 122:109–124

    Article  Google Scholar 

  • Jablonski NG (2005) Primate homeland: forests and the evolution of primates during the Tertiary and Quaternary in Asia. Anthropol Sci 113:117–122

    Article  Google Scholar 

  • Jablonski NG, Chaplin G (2009) The fossil record of gibbons. In: Lappan SM, Whittaker D (eds) The gibbons: new perspectives on small ape socioecology and population biology. Springer, Berlin, pp 111–130

    Chapter  Google Scholar 

  • Jablonski NG, Su DF, Flynn LJ, Ji X, Deng C, Kelley J et al (2014) The site of Shuitangba (Yunnan, China) preserves a unique terminal Miocene fauna. J Vertebr Paleontol 34:1251–1257

    Article  Google Scholar 

  • Jacques FM, Guo SX, Su T, Xing YW, Huang YJ, Liu YS et al (2011) Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: a case study of the Lincang flora from Yunnan Province. Palaeogeogr Palaeoclimatol Palaeoecol 304:318–327

    Article  Google Scholar 

  • Ji XP, Jablonski NG, Su DF, Deng CL, Flynn LJ, You YS, Kelley J (2013) Juvenile hominoid cranium from the terminal Miocene of Yunnan, China. Chin Sci Bull 58:3771–3779

    Article  CAS  Google Scholar 

  • Jiang X, Luo Z, Zhao S, Li R, Liu C (2006) Status and distribution pattern of black crested gibbon (Nomascus concolor jingdongensis) in Wuliang Mountains, Yunnan, China: implication for conservation. Primates 47:264–271

    Article  PubMed  Google Scholar 

  • John CM, Karner GD, Mutti M (2004) δ18O and Marion Plateau backstripping: combining two approaches to constrain late middle Miocene eustatic amplitude. Geology 32:829–832

    Article  CAS  Google Scholar 

  • Kennett J (1995) A review of polar climatic evolution during the Neogene based on the marine sediment record. In: Vrba ES, Denton GH, Partridge TC, Burckle LH (eds) Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven Connecticut, pp 49–64

    Google Scholar 

  • Kennett JP, Hodell DA (1993) Evidence for relative climatic stability of Antarctica during the early Pliocene: a marine perspective. Geogr Ann 75A:202–222

    Google Scholar 

  • Kominz MA, Browning JV, Miller KG, Sugarman PJ, Mizintseva S, Scotese CR (2008) Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Res 20:211–226

    Article  Google Scholar 

  • Kürschner WM, Kvaček Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci 105:449–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR, Johnson JV et al (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci 105:10676–10680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhai S-N, Qiu Y-X, Guo Y-P, Ge X-J, Comes HP (2011) Glacial survival east and west of the ‘Mekong–Salween Divide’ in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae). Mol Phylogenet Evol 59:412–424

    Article  PubMed  Google Scholar 

  • Li XW, Li J (1992) On the validity of Tanaka Line and its significance viewed from the distribution of Eastern Asiatic genera in Yunnan. Acta Bot Yunnanica 14:1–12

    Google Scholar 

  • Lin T, Lo C, Chung S, Lee T, Lee H, Hsu F (2005) New geochronological constraints on the movement of Jiali and Gaoligong shear zones in SE Tibet, and its tectonic implication. Am Geophys Union, Western Pacific Geophysical Meeting, Abstracts 85:28

    Google Scholar 

  • Liu X, Yin ZY (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 183:223–245

    Article  Google Scholar 

  • Livermore R, Hillenbrand CD, Meredith M, Eagles G (2007) Drake Passage and Cenozoic climate: An open and shut case? Geochem Geophys Geosy 8:1–11

    Google Scholar 

  • Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M, Sakamoto M et al (2008) Dinosaurs and the Cretaceous terrestrial revolution. Proc R Soc Lon B 275:2483–2490

    Article  Google Scholar 

  • Lucas PW, Dominy NJ, Osorio D, Peterson-Pereira W, Riba-Hernandez P, Solis-Madrigal S, Stoner KE, Yamashita N (2007) Perspectives on primate color vision. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 805–819

    Chapter  Google Scholar 

  • Magallón S, Castillo A (2009) Angiosperm diversification through time. Am J Bot 96:349–365

    Article  PubMed  Google Scholar 

  • Marshall JT, Sugardjito J (1986) Gibbon systematics. In: Swindler DR, Erwin J (eds) Comparative primate biology, vol 1, systematics. Alan R Liss, New York, pp 137–185

    Google Scholar 

  • McQuarrie N, van Hinsbergen DJJ (2013) Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology 41:315–318

    Article  Google Scholar 

  • Meijaard E (2003) Mammals of south-east Asian islands and their Late Pleistocene environments. J Biogeogr 30:1245–1257

    Article  Google Scholar 

  • Metcalfe I (1996) Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Aust J Earth Sci 43:605–623

    Article  Google Scholar 

  • Metcalfe I (2011) Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res 19:3–21

    Article  Google Scholar 

  • Metcalfe I (2013a) Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of Eastern Tethys. J Asian Earth Sci 66:1–33

    Article  Google Scholar 

  • Metcalfe I (2013b) Asia: South-East. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of Geology. Elsevier, Amsterdam

    Google Scholar 

  • Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Palaeogeogr Palaeoclimatol Palaeoecol 253:251–270

    Article  Google Scholar 

  • Miller KG, Fairbanks RG (1985) Oligocene to Miocene carbon isotope cycles and abyssal circulation changes. In: Sundquist ET, Broecker WS (eds) The Carbon Cycle and Atmospheric CO: natural variations Archean to present. Tarpon Springs, Washington, pp 469–486

    Chapter  Google Scholar 

  • Miller KG, Wright JD, Fairbanks RG (1991) Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res Solid Earth 96:6829–6848

    Article  Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME et al (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298

    Article  CAS  PubMed  Google Scholar 

  • Milton K (ed) (1980) The foraging strategies of howler monkeys. Columbia University Press, New York

    Google Scholar 

  • Molengraaff GAF (1921) Modern deep-sea research in the East Indian Archipelago. Geogr J 57:95–121

    Article  Google Scholar 

  • Morley RJ (ed) (2000) Origin and evolution of tropical rain forests. Wiley, New York

    Google Scholar 

  • Morley RJ (2011) Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In: Dow K, Dowling TE (eds) Tropical rainforest responses to climatic change. Springer, Berlin, pp 1–34

    Chapter  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M et al (2009) Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325:1371–1374

    Article  PubMed  CAS  Google Scholar 

  • Naish TR, Wilson GS (2009) Constraints on the amplitude of mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record. Philos Trans R Soc A 367:169–187

    Article  CAS  Google Scholar 

  • Ohlwein C, Wahl ER (2012) Review of probabilistic pollen-climate transfer methods. Quat Sci Rev 31:17e29

    Google Scholar 

  • Okay AI, Zattin M, Cavazza W (2010) Apatite fission-track data for the Miocene Arabian-Eurasian collision. Geology 38:35–38

    Article  Google Scholar 

  • Pagani M, Freeman KH, Arthur MA (1999) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876–879

    Article  CAS  PubMed  Google Scholar 

  • Patnaik R, Chauhan P (2009) India at the cross-roads of human evolution. J Biosci 34:729–747

    Article  CAS  PubMed  Google Scholar 

  • Pelejero C, Kienast M, Wang L, Grimalt JO (1999) The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea. Earth Planet Sci Lett 171:661–671

    Article  CAS  Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian Monsoon to forcing parameters and implications for its evolution. Nature 360:647–652

    Article  Google Scholar 

  • Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–332

    Article  CAS  PubMed  Google Scholar 

  • Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kováè M (2004) Lithological–paleogeographic maps of paratethys. 10 Maps Late Eocene to Pliocene. Cour Forsch-Inst Senckenberg 250:1–46

    Google Scholar 

  • Reichard UH, Barelli C, Hirai H, Nowak G (2016) The evolution of gibbons and siamang. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 3–41

    Google Scholar 

  • Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Naturhistor Mus Wien 99:279–310

    Google Scholar 

  • Rögl F (1999a) Circum-Mediterranean Miocene paleogeography. In: Rössner G, Heissig K (eds) The Miocene land mammals of Europe. Fritz Pfeil Verlag, Munich, Dr, pp 39–48

    Google Scholar 

  • Rögl F (1999b) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpath 50:339–349

    Google Scholar 

  • Rohling EJ, Fenton M, Jorissen FJ, Bertrand P, Ganssen G, Caulet JP (1998) Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394:162–165

    Article  CAS  Google Scholar 

  • Sarnthein M, Pflaumann U, Wang PX, Wong HK (eds) (1994) Preliminary report of the Sonne-95 cruise ‘Monitor Monsoon’ to the South China Sea. Ber Rep 68 Geol-Paläontol Inst Univ Kiel, Germany

    Google Scholar 

  • Seluchi ME, Norte FA, Satyamurty P, Chan Chou S (2003) Analysis of three situations of the foehn effect over the Andes (Zonda wind) using the Eta–CPTEC regional model. Weather Forecast 18:481–501

    Article  Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2004) Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770

    Article  CAS  PubMed  Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2008) Middle Miocene ice sheet dynamics, deep‐sea temperatures, and carbon cycling: a Southern Ocean perspective. Geochem Geophys 9(2):1–14

    Google Scholar 

  • Simons WJF, Socquet A, Vigny C, Ambrosius BAC, Haji Abu S, Promthong C et al (2007) A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. J Geophys Res 112:B06420

    Article  Google Scholar 

  • Steiper ME, Young NM, Sukarna TY (2004) Genomic data support the hominoid slowdown and an early Oligocene estimate for the hominoid–cercopithecoid divergence. Proc Natl Acad Sci USA 101:17021–17026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steppuhn A, Micheels A, Geiger G, Mosbrugger V (2006) Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeogr Palaeoclimatol Palaeoecol 238:399–423

    Article  Google Scholar 

  • Sun J, Liu T (2000) Stratigraphic evidence for the uplift of the Tibetan Plateau between ∼1.1 and ∼0.9 myr ago. Quat Res 54:309–320

    Article  Google Scholar 

  • Sun J, Zhang Z (2008) Palynological evidence for the mid-Miocene climatic optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Global Planet Change 64:53–68

    Article  Google Scholar 

  • Sun X, Wang P (2005) How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol 222:181–222

    Article  Google Scholar 

  • Sussman RW, Tab Rasmussen D, Raven PH (2013) Rethinking primate origins again. Am J Primatol 75:95–106

    Article  PubMed  Google Scholar 

  • Szalay FS (2007) Ancestral locomotor modes, placental mammals, and the origin of euprimates: lessons from history. In: Ravosa MJ, Dagosto M (eds) Primate Origins: adaptations and evolution. Springer, New York, pp 457–487

    Chapter  Google Scholar 

  • Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Ding Z, White PD, Dong X, Ji J, Jiang H, Luo P, Wang X (2011) Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth Planet Sci Lett 302:439–447

    Article  CAS  Google Scholar 

  • Thinh VN, Mootnick AR, Geissmann T, Li M, Ziegler T, Agil M et al (2010a) Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol 10:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thinh VN, Mootnick AR, Thanh VN, Nadler T, Roos C (2010b) A new species of crested gibbon, from the central Annamite mountain range. Vietn J Primatol 4:1–12

    Google Scholar 

  • Thinh VN, Rawson B, Hallam C, Kenyon M, Nadler T, Walter L, Roos C (2010c) Phylogeny and distribution of crested gibbons (genus Nomascus) based on mitochondrial cytochrome b gene sequence data. Am J Primatol 72:1047–1054

    Article  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Vincent E, Berger WH (1985) Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis. In: Sundquist ET, Broecker WS (eds) The Carbon Cycle and Atmospheric CO: natural variations Archean to present. Tarpon Springs, Washington, pp 455–468

    Chapter  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Vrba ES (2007) Role of environmental stimuli in hominid origins. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, vol 3. Phylogeny of hominidsSpringer, Berlin Heidelberg New York, pp 1441–1481

    Chapter  Google Scholar 

  • Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638

    Article  Google Scholar 

  • Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS et al (2008) Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci 105(13):4987–4992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei GJ, Deng WF, Liu Y, Li XH (2007) High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Paleogeogr Paleoclimatol Paleoecol 250:126–138

    Article  Google Scholar 

  • Westerhold T, Bickert T, Röhl U (2005) Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeogr Palaeoclimatol Palaeoecol 217:205–222

    Article  Google Scholar 

  • Whitten AJ, Damanik SJ, Jazanul A, Mazaruddin H (eds) (2000) The ecology of Sumatra. Periplus Editions (HK) Ltd., Singapore

    Google Scholar 

  • Wilting A, Sollmann R, Meijaard E, Helgen KM, Fickel J (2012) Mentawai’s endemic, relictual fauna: is it evidence for Pleistocene extinctions on Sumatra? J Biogeogr 39:1608–1620

    Article  Google Scholar 

  • Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941

    Article  Google Scholar 

  • Woodruff DS, Turner LM (2009) The Indochinese-Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions. J Biogeogr 36:803–821

    Article  Google Scholar 

  • Wright JD, Miller KG, Fairbanks RG (1992) Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography 7:357–389

    Article  Google Scholar 

  • Wu ZY (1988) Hengduan mountain flora and her significance. J Jpn Bot 63:297–311

    Google Scholar 

  • Yang J, Wang YF, Spicer RA, Mosbrugger V, Li CS, Sun QG (2007) Climatic reconstruction at the Miocene Shanwang Basin, China, using Leaf Margin Analysis, CLAMP, Coexistence Approach, and Overlapping Distribution Analysis. Am J Bot 94:599–608

    Article  PubMed  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zhisheng A, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature 411:62–66

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Salter CL (eds) (1986) Physical geography of China. Wiley, New York

    Google Scholar 

  • Zhou L, Su YCF, Thomas DC, Saunders RMK (2012) ‘Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). J Biogeogr 39:322–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H Reichard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichard, U.H., Croissier, M.M. (2016). Hylobatid Evolution in Paleogeographic and Paleoclimatic Context. In: Reichard, U., Hirai, H., Barelli, C. (eds) Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5614-2_5

Download citation

Publish with us

Policies and ethics