Skip to main content

Locomotion and Posture in Ancestral Hominoids Prior to the Split of Hylobatids

  • Chapter
  • First Online:
Evolution of Gibbons and Siamang

Abstract

Torso-orthograde (TO)-positional behavior and an associated suite of postcranial morphological specializations , both of which are often linked to the evolution of large body size , are considered hallmarks of hominoid evolution . These features are thought to have played an important role in the Old World monkey-ape divergence and the development of upright bipedal locomotion in our own lineage. Compared to early theorists, who considered hylobatids an appropriate model for investigating the initial stages of hominoid evolution, more recent reconstructions of the last common ancestor of hominoids have advocated a larger-bodied, more generalized ape very different from hylobatids as the most likely morphotype. While field observations from the large-bodied non-human hominids (i.e., Asian and African apes) confirm that they do in fact utilize an expansive TO-positional repertoire, no detailed data from hylobatids has been available until now to fully evaluate this hypothesis in light of all hominoid taxa. Using recently published positional behavior data from a population of adult white-handed gibbons ( Hylobates lar ) from Khao Yai National Park , Thailand , and integrating these data with a diverse anthropoid primate comparative sample, we reevaluate differences in positional behavior of extant cercopithecoids and hominoids. The comparative dataset agrees with recent suggestions that all living apes share a diverse TO-positional repertoire, relative to that of cercopithecoid monkeys. The question, whether or not TO-anatomical specializations and behavior among the Hominoidea represent homologous or homoplastic traits or both, could not yet be answered conclusively, despite the fact that homologous evolution is the more parsimonious explanation, due to a lack of support from the fossil record. Nevertheless, an upright (TO) and enhanced exploitation of the arboreal tree canopy by our ape ancestors were likely key evolutionary novelties that helped to shape the origin of hominins. Only an expansive understanding of the diversity of both extant and extinct apes will help to comprehensively unravel our enigmatic origins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Torso-orthograde locomotion includes bipedalism, brachiation/forelimb swing, clamber/transfer, and vertical climb, as outlined by Hunt et al. 1996.

  2. 2.

    Torso-orthograde posture includes bipedalism and forelimb suspension, as outlined by Hunt et al. 1996.

  3. 3.

    Extant apes share a number of postcranial anatomical features, including a relatively short stable lumbar region, a mediolaterally broad and dorsoventrally shallow thorax, relatively long forelimbs, a more dorsal positioning of the scapula, a mobile shoulder joint, an elbow that is fully extendable, a forearm that is stable during a wide range of pronation and supination, a mobile wrist, long curved phalanges, the lack of a tail, in addition to myological specializations associated with arm extension/flexion, forearm pronation/supination, and hand flexion (Keith 1923; Schultz 1930; Harrison 1987; 2016; Hunt 1991b, 2016; Rose 1993, 1994, 1997; Gebo 1996; Ward 1997a, 2015; Larson 1998; Stern and Larson 2001; Gibbs et al. 2002; Young 2003; Kagaya et al. 2008, 2009, 2010; Diogo and Wood 2011; Chan 2014; Williams and Russo 2015).

  4. 4.

    We follow Harrison (2010a, 2013) in placing Proconsul within the subfamily Proconsulinae; Afropithecus, Equatorius, Heliopithecus, Morotopithecus (Afropithecus?), and Nacholapithecus within the subfamily Afropithecinae; and Mabokopithecus, Nyanzapithecus, Rangwapithecus, Turkanopithecus, and Xenopithecus in the subfamily Nyanzapithecinae. Rukwapithecus is also tentatively placed in the subfamily Nyanzapithecinae, following Stevens et al. (2013). We recognize that McNulty et al. (2015) separate the fossil material commonly associated with the genus Proconsul, into two genera, Ekembo and Proconsul; however, given that the taxonomic changes are relatively recent and that the available postcranial material has been described as relatively homogeneous (Ward 1998), we tentatively place Ekembo as a separate genus within the subfamily Proconsulinae and utilize Ekembo/Proconsul to collectively designate the group, except in instances where a specific species is highlighted. Also similar to Harrison (2010a, 2013) we group the aforementioned subfamilies in the family Proconsulidae and superfamily Proconsuloidea (which may be paraphyletic); however, we place the Proconsuloidea as stem hominoids (Begun et al. 1997; Rae 1999; Fleagle 2013). Some recent studies prefer to place the Proconsulidae into the superfamily Hominoidea (Zalmout et al. 2010; Stevens et al. 2013). The placement of Otavipithecus is unclear, and we therefore place this taxon incertae sedis among the Proconsuloidea. Following Harrison et al. (2008), Yuanmoupithecus currently remains the only fossil within the family Hylobatidae (Harrison 2016). Within the family Hominidae, we tentatively place the genera Anoiapithecus, Dryopithecus, Graecopithecus, Hispanopithecus, Oreopithecus, Pierolapithecus, Rudapithecus, and Ouranopithecus, within the subfamily Dryopithecinae (i.e., stem hominids) (Harrison 2010b; Fleagle 2013). Furthermore, the species Ankarapithecus, Gigantopithecus, Khoratpithecus, and Sivapithecus are tentatively grouped into the hominid subfamily Ponginae (i.e., stem pongines) (Harrison 2010b; Fleagle 2013). As incertae sedis within the family Hominidae, we place the species Chororapithecus, Lufengpithecus, Nakalipithecus, and Samburupithecus (Harrison 2010a; Ji et al. 2013). The taxonomic placement of Griphopithecus and Kenyapithecus is highly enigmatic (i.e., they may represent stem hominoids, early crown hominoids, or stem hominids); however, we tentatively group them incertae sedis in the family Hominidae (Harrison 2010a; Fleagle 2013). Finally, we highlight the recent work of Alba et al. (2015), who named a new fossil genus Pliobates, which they placed within the superfamily Hominoidea, in a newly named family Pliobatidae (i.e., stem hominoids). However, Benefit and McCrossin (2015), in response to the aforementioned publication have made a good case that Pliobates may actually be better placed within the early catarrhine superfamily Pliopithecoidea. Until subsequent studies confirm the placement of Pliobates within the Hominoidea, we follow Benefit and McCrossin’s (2015) suggestion and view Pliobates as a pliopithecoid.

  5. 5.

    From this point on, we highlight in bold the specific modes detailed in Hunt et al. (1996) to maintain consistency and to differentiate these modes from expansive and/or vague locomotor and postural categories used in previous studies of positional behavior or in discussions of fossil taxa.

  6. 6.

    The study by Sarringhaus et al. (2014) was not included in the comparative sample presented here, as their study combined data from both arboreal and terrestrial contexts, whereas in this study, the focus was strictly arboreal locomotion and posture.

  7. 7.

    The fossil locations for Dryopithecus, Hispanopithecus, Oreopithecus, Pierolapithecus, and Rudapithecus collectively span from ~13 to 7 Ma (Casanovas-Vilar et al. 2011).

  8. 8.

    The taxonomic placement of Oreopithecus is highly enigmatic. Currently, many authors consider Oreopithecus to be a stem hominid (Harrison and Rook 1997; Begun 2007, 2015; Harrison 2010b; Begun et al. 2012). Some analyses suggest, however, that Oreopithecus shares derived dental traits with one or more of the nyanzapithecines (McCrossin 1992; Harrison 2002, 2010a). If this later scenario is proven to be correct, the postcranial specializations that are shared between Oreopithecus and extant hominoids are likely homoplastic.

  9. 9.

    While not very many of their postcranial remains have been published, Begun (2015) and Deane and Begun (2008) suggest that Lufengpithecus, which is dated to ~9–7 mya, (Xijun and Zhuding 2002; Qi et al. 2006) displays curved phalanges that are strongly indicative of suspensory positional behaviors.

References

  • Abourachid A, Höfling E (2012) The legs: a key to bird evolutionary success. J Ornithol 153:193–198

    Article  Google Scholar 

  • Alba DM (2012) Fossil apes from the Vallés-Penedés Basin. Evol Anthropol 21:254–269

    Article  PubMed  Google Scholar 

  • Alba DM, Moyà-Solà S (2009) The origin of the great-ape-and-human clade (Primates: Hominidae) reconsidered in the light of recent hominoid findings from the middle Miocene of the Vallés-Penedés Basin (Catalonia, Spain). Paleolustina 1:75–83

    Google Scholar 

  • Alba DM, Almécija S, Moyà-Solà S (2010) Locomotor inferences in Pierolapithecus and Hispanopithecus: reply to Deane and Begun (2008). J Hum Evol 59:143–148

    Article  PubMed  Google Scholar 

  • Alba DM, Moyà-Solà S, Almécija S (2011) A partial hominoid humerus from the middle Miocene of Castell de Barberà (Vallés-Penedés Basin, Catalonia, Spain). Am J Phys Anthropol 144:365–381

    Article  PubMed  Google Scholar 

  • Alba DM, Almécija S, Casanovas-Vilar I, Méndez JM, Moyà-Solà S (2012) A partial skeleton of the fossil great ape Hispanopithecus laietanus from Can Feu and the mosaic evolution of crown-hominoid positional behaviors. PLoS ONE 7(6):e39617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alba DM, Almécija S, DeMiguel D, Fortuny J, Pérez de los Ríos M, Pina M, Robles JM, Moyà-Solà S (2015) Miocene small-bodied ape from Eurasia sheds light on hominoid evolution. Science 350:aab2625

    Google Scholar 

  • Almécija S, Alba DM, Moyà-Solà S, Köhler M (2007) Orang-like manual adaptations in the fossil hominoid Hispanopithecus laietanus: first steps towards great ape suspensory behaviours. Proc R Soc Biol Sci B 274:2375–2384

    Article  Google Scholar 

  • Almécija S, Alba DM, Moyà-Solà S (2009) Pierolapithecus and the functional morphology of Miocene ape hand phalanges: paleobiological and evolutionary implications. J Hum Evol 57:284–297

    Article  PubMed  Google Scholar 

  • Almécija S, Alba DM, Moyà-Solà S (2012) The thumb of Miocene apes: new insights from Castell de Barberà (Catalonia, Spain). Am J Phys Anthropol 148:436–450

    Article  PubMed  Google Scholar 

  • Andrews P, Groves CE (1976) Gibbon and brachiation. In: Rumbaugh DM (ed) Gibbon and siamang: a series of volumes on the lesser apes. Suspensory behavior, locomotion, and other behaviors of captive gibbons: cognition, vol 4. Basel, Karger, pp 167–218

    Google Scholar 

  • Andrews P, Harrison T (2005) The last common ancestor of apes and humans. In: Lieberman DE, Smith RJ, Kelley J (eds) Interpreting the past: essays on human, primate, and mammal evolution. Brill Academic Publishers Inc., Boston, pp 104–121

    Google Scholar 

  • Arias-Martorell J, Tallman M, Maria Potau J, Bello-Hellegouarch G, Pérez-Pérez A (2015) Shape analysis of the proximal humerus in orthograde and semi-orthograde primates: Correlates of suspensory behavior. Am J Primatol 77:1–19

    Google Scholar 

  • Avis V (1962) Brachiation: the crucial issue for man’s ancestry. Southwest J Anthropol 18:119–148

    Article  Google Scholar 

  • Begun DR (1992) Phyletic diversity and locomotion in primitive European hominids. Am J Phys Anthropol 87:311–340

    Article  CAS  PubMed  Google Scholar 

  • Begun D (2002a) The Pliopithecoidea. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 221–240

    Google Scholar 

  • Begun D (2002b) European hominoids. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 339–368

    Google Scholar 

  • Begun DR (2007) How to identify (as opposed to define) a homoplasy: examples from fossil and living great apes. J Hum Evol 52:559–572

    Article  PubMed  Google Scholar 

  • Begun DR (2015) Fossil record of Miocene hominoids. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, vol 2. Springer, New York, pp 1261–1332

    Chapter  Google Scholar 

  • Begun DR, Kivell TL (2011) Knuckle-walking in Sivapithecus? The combined effects of homology and homoplasy with possible implications for pongine dispersals. J Hum Evol 60:158–170

    Article  PubMed  Google Scholar 

  • Begun DR, Ward CV, Rose MD (1997) Events in hominoid evolution. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 389–415

    Chapter  Google Scholar 

  • Begun DR, Nargolwalla MC, Kordos L (2012) European Miocene hominids and the origin of the African ape and human clade. Evol Anthropol 21:10–23

    Article  PubMed  Google Scholar 

  • Bell AD, Bryan A (2008) Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, Oxford

    Google Scholar 

  • Benefit BR, McCrossin ML (1995) Miocene hominoids and hominid origins. Annu Rev Anthropol 24:237–256

    Article  Google Scholar 

  • Benefit BR, McCrossin ML (2015) A window into ape evolution. Science 350:515

    Article  CAS  PubMed  Google Scholar 

  • Cannon CH, Leighton M (1994) Comparative locomotor ecology of gibbons and macaques: selection of canopy elements for crossing gaps. Am J Phys Anthropol 93:505–524

    Article  CAS  PubMed  Google Scholar 

  • Cant JGH (1987a) Positional behavior of female Bornean orangutans (Pongo pygmaeus). Am J Primatol 12:71–90

    Article  Google Scholar 

  • Cant JGH (1987b) Effects of sexual dimorphism in body size on feeding postural behavior of Sumatran orangutans (Pongo pygmaeus). Am J Phys Anthropol 74:143–148

    Article  Google Scholar 

  • Cant JG (1988) Positional behavior of long-tailed macaques (Macaca fascicularis) in northern Sumatra. Am J Phys Anthropol 76:29–37

    Article  CAS  PubMed  Google Scholar 

  • Cant JGH (1992) Positional behavior and body size of arboreal primates: a theoretical framework for field studies and an illustration of its application. Am J Phys Anthropol 88:273–283

    Article  CAS  PubMed  Google Scholar 

  • Cant JGH, Youlatos D, Rose MD (2001) Locomotor behavior of Lagothrix lagothrica and Ateles belzebuth in Yasuni National Park, Ecuador: general patterns and non suspensory modes. J Hum Evol 41:141–166

    Article  CAS  PubMed  Google Scholar 

  • Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J et al (2014) The gibbon genome provides a novel perspective on the accelerated karyotype evolution of small apes. Nature 513:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson KJ (2005) Investigating the form-function interface in African apes: relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses. Am J Phys Anthropol 127:312–334

    Article  PubMed  Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins FA (ed) Primate locomotion. Academic Press, New York, pp 45–83

    Chapter  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake BD (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 73–88

    Google Scholar 

  • Cartmill M, Milton K (1977) The lorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. Am J Phys Anthropol 47:249–272

    Article  CAS  PubMed  Google Scholar 

  • Casanovas-Vilar I, Alba DM, Garcés M, Robles JM, Moyà-Solà S (2011) Updated chronology for the Miocene hominoid radiation in western Eurasia. Proc Nat Acad Sci 108:5554–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan LK (2007a) Scapular position in primates. Folia Primatol 78:19–35

    Article  PubMed  Google Scholar 

  • Chan LK (2007b) Glenohumeral mobility in primates. Folia Primatol 78:1–18

    Article  PubMed  Google Scholar 

  • Chan LK (2008) The range of passive arm circumduction in primates: do hominoids really have more mobile shoulders? Am J Phys Anthropol 136:265–277

    Article  PubMed  Google Scholar 

  • Chan LK (2014) The thoracic shape of hominoids. Anat Res Int Article ID 324850, 8 p. doi:10.1155/2014/324850

    Google Scholar 

  • Chan Y-C, Roos C, Inoue-Murayama M, Inoue E, Shih C-C, Pei KJ-C, Vigilant L (2010) Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS ONE 5(12):e14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee HJ, Ho SYW, Barnes I, Groves C (2009) Estimating the phylogeny and divergence times of primates using a supertree approach. BMC Evol Biol 9:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chivers DJ (1972) The siamang and the gibbon in the Malay peninsula. In: Rumbaugh DM (ed) The gibbon and siamang, vol 1. Karger, Basel, pp 103–135

    Google Scholar 

  • Chivers DJ (1974) The siamang in Malaya: a field study of a primate in tropical rain forest. Contrib Primatol 4:1–335

    CAS  PubMed  Google Scholar 

  • Chivers D, Anandam M, Groves C, Molur S, Rawson BM, Richardson MC, Roos C, Whittaker D (2013) Family Hylobatidae (gibbons). In: Mittermeier RA, Rylands AB, Wilson DE (eds) Handbook of the mammals of the world: primates. Lynx Edicions, Barcelona, pp 754–791

    Google Scholar 

  • Crompton RH, Vereecke EE, Thorpe SKS (2008) Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 212:501–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deane AS, Begun DR (2008) Broken fingers: retesting locomotor hypotheses for fossil hominoids using fragmentary proximal phalanges and high-resolution polynomial curve fitting (HR-PCF). J Hum Evol 55:691–701

    Article  PubMed  Google Scholar 

  • DeSilva JM, Morgan ME, Barry JC, Pilbeam D (2010) A hominoid distal tibia from the Miocene of Pakistan. J Hum Evol 58:147–154

    Article  PubMed  Google Scholar 

  • Diogo R, Wood B (2011) Soft-tissue anatomy of the primates: Phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. J Anat 219:273–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diogo R, Potau JM, Pastor JF, de Paz FJ, Ferrero EM, Bello G, Barbosa M, Aziz MA, Burrows AM, Arias-Martotell J, Wood BA (2012) Photographic and descriptive musculoskeletal atlas of gibbons and siamangs (Hylobates). CRC Press, Florida

    Google Scholar 

  • Donoghue PCJ (2005) Saving the stem group: a contradiction in terms? Paleobiology 31:553–558

    Google Scholar 

  • Donoghue MJ, Doyle JA, Gauthier J, Kluge AG, Rowe T (1989) The importance of fossils in phylogeny reconstruction. Annu Rev Ecol Syst 20:431–460

    Article  Google Scholar 

  • Doran DM (1992) Comparison of instantaneous and locomotor bout sampling methods: a case study of adult male chimpanzee locomotor behavior and substrate use. Am J Phys Anthropol 89:85–99

    Article  CAS  PubMed  Google Scholar 

  • Doran DM (1993a) Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion. Am J Phys Anthropol 91:83–98

    Article  CAS  PubMed  Google Scholar 

  • Doran DM (1993b) Sex differences in adult chimpanzee positional behavior: the influence of body size on locomotion and posture. Am J Phys Anthropol 91:99–115

    Article  CAS  PubMed  Google Scholar 

  • Doran DM (1996) Comparative positional behavior of the African ape. In: McGrew WC, Marchant LF, Nishida T (eds) Great ape societies. Cambridge University Press, Cambridge, pp 213–224

    Chapter  Google Scholar 

  • Druelle F, Berillon G (2014) Bipedalism in non-human primates: a comparative review of behavioural and experimental explorations on catarrhines. BMSAP 26(3–4):111–120

    Article  Google Scholar 

  • Dunbar DC, Badam GL (2000) Locomotion and posture during terminal branch feeding. Int J Primatol 21:649–669

    Article  Google Scholar 

  • Erikson GE (1963) Brachiation in New World monkeys and anthropoid apes. Symp Zool Soc Lond 10:135–164

    Google Scholar 

  • Ersoy A, Kelley J, Andrews P, Alpagut B (2008) Hominoid phalanges from the middle Miocene site of Paşalar, Turkey. J Hum Evol 54:518–529

    Article  CAS  PubMed  Google Scholar 

  • Fan P, Scott MB, Hanlan FEI, Changyong MA (2013) Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Int Zool 8:356–364

    Article  Google Scholar 

  • Farlow JO, Gatesy SM, Holtz TR Jr, Hutchinson JR, Robinson JM (2000) Theropod locomotion. Am Zool 40:640–663

    Google Scholar 

  • Fei H, Ma C, Bartlett TQ, Dai R, Xiao W, Fan P (2015) Feeding postures of Cao Vit gibbons (Nomascus nasutus) living in a low-canopy karst forest. Int J Primatol 36:1036–1054

    Article  Google Scholar 

  • Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter Roos C (2013) A mitogenomic phylogeny of living primates. PLoS ONE 8(7):e69504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of the Malayan siamang and implications for hominid evolution. Folia Primatol 26:245–269

    Article  CAS  PubMed  Google Scholar 

  • Fleagle JG (1980) Locomotion and posture. In: Chivers DJ (ed) Malayan forest primates: ten years’ study in tropical rain forest. Plenum Press, New York, pp 191–207

    Chapter  Google Scholar 

  • Fleagle JG (2013) Primate adaptation and evolution, 3rd edn. Academic Press, New York

    Google Scholar 

  • Fleagle JG, Stern JT, Jungers WL, Susman RL, Vangor AK, Wells JP (1981) Climbing: a biomechanical link with brachiation and with bipedalism. Symp Zool Soc Lond 48:359–375

    Google Scholar 

  • Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92

    Article  CAS  PubMed  Google Scholar 

  • Gebo DL (2004) Paleontology, terrestriality, and the intelligence of great apes. In: Russon AE, Begun DR (eds) The evolution of thought: evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 320–334

    Chapter  Google Scholar 

  • Gebo DL, Chapman CA (1995) Positional behavior in five sympatric old world monkeys. Am J Phys Anthropol 91:49–76

    Article  Google Scholar 

  • Gebo DL, MacLatchy L, Kityo R, Deino A, Kingston J, Pilbeam D (1997) A hominoid genus from the early Miocene of Uganda. Science 276:401–404

    Article  CAS  PubMed  Google Scholar 

  • Gibbs S, Collard M, Wood B (2002) Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis. J Anat 200:3–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittins SP (1983) Use of the forest canopy by the agile gibbon. Folia Primatol 40:134–144

    Article  CAS  PubMed  Google Scholar 

  • Godfrey LR, Jungers WL (2003) The extinct sloth lemurs of Madagascar. Evol Anthropol 12:252–263

    Article  Google Scholar 

  • Godinot M (2015) Fossil record of the primates from the Paleocene to the Oligocene. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, vol 2. Springer, New York, pp 1137–1261

    Chapter  Google Scholar 

  • Grand TI (1972) A mechanical interpretation of terminal branch feeding. J Mammal 53:198–201

    Article  Google Scholar 

  • Grand TI (1984) Motion economy within the canopy: four strategies for mobility. In: Rodman PS, Cant JGH (eds) Adaptations for foraging in nonhuman primates. Columbia University Press, New York, pp 54–72

    Google Scholar 

  • Gregory WK (1916) Studies on the evolution of the primates. Part II. Phylogeny of recent and extinct anthropoids with special reference to the origin of man. Bull Am Mus Nat Hist 35:258–355

    Google Scholar 

  • Gregory WK (1928) Were the ancestors of man primitive brachiators? Proc Am Phil Soc 67:129–150

    Google Scholar 

  • Gregory WK (1934) Man’s place among the anthropoids. Clarendon, Benjamin/Cummings, Oxford

    Google Scholar 

  • Groves CP (1972) Systematics and phylogeny of gibbons. In: Rumbaugh D (ed) Gibbon and siamang, vol 1. Karger, Basel, pp 2–89

    Google Scholar 

  • Hall BK (2003) Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biol Rev 78:409–433

    Article  PubMed  Google Scholar 

  • Hall BK (2007) Homoplasy and homology: dichotomy or continuum? J Hum Evol 52:473–479

    Article  PubMed  Google Scholar 

  • Hammond AS, Alba DM, Almécija S, Moyà-Solà S (2013) Middle Miocene Pierolapithecus provides a first glimpse into early hominid pelvic morphology. J Hum Evol 64:658–666

    Article  PubMed  Google Scholar 

  • Hanna JB (2006) Kinematics of vertical climbing in lorises and Cheirogaleus medius. J Hum Evol 50:469–478

    Article  CAS  PubMed  Google Scholar 

  • Harrison T (1987) The phylogenetic relationships of the early catarrhine primates: a review of the current evidence. J Hum Evol 16:41–80

    Article  Google Scholar 

  • Harrison T (1991) The implications of Oreopithecus bambolii for the origins of bipedalism. In: Coppens Y, Senut B (eds) Origine(s) de la Bipédie chez les Hominidés. Fodation Singer-Polignac, Paris, pp 235–244

    Google Scholar 

  • Harrison T (2002) Late Oligocene to middle Miocene catarrhines from Afro-Arabia. In: Hartwig WL (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 311–338

    Google Scholar 

  • Harrison T (2010a) Dendropithecoidea, Proconsuloidea, and Hominoidea. In: Werdelin L, Sanders WJ (eds) Cenozoic mammals of Africa. University of California Press, Berkeley, pp 429–469

    Chapter  Google Scholar 

  • Harrison T (2010b) Apes among the tangled branches of human origins. Science 327:532–534

    Article  CAS  PubMed  Google Scholar 

  • Harrison T (2013) Catarrhine origins. In: Begun DR (ed) A companion to paleoanthropology. Blackwell Publishing, New York, pp 376–396

    Chapter  Google Scholar 

  • Harrison T, Andrews P (2009) The anatomy and systematic position of the early Miocene proconsulids from Meswa Bridge, Kenya. J Hum Evol 56:479–496

    Article  PubMed  Google Scholar 

  • Harrison T, Rook L (1997) Enigmatic anthropoid or misunderstood ape? The phylogenetic status of Oreopithecus bambolii reconsidered. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 327–362

    Chapter  Google Scholar 

  • Harrison T, Ji X, Zheng L (2008) Renewed investigations at the late Miocene hominoid locality of Leilao, Yunnan, China. Am J Phys Anthropol 135:113

    Google Scholar 

  • Harrison T (2016) The fossil record and evolutionary history of hylobatids. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 91–110

    Google Scholar 

  • Houle A, Chapman CA, Vickery WL (2007) Intratree variation in fruit production and implications for primate foraging. Int J Primatol 28:1197–1217

    Article  Google Scholar 

  • Hunt KD (1991a) Positional behavior in the Hominoidea. Int J Primatol 12:95–118

    Article  Google Scholar 

  • Hunt KD (1991b) Mechanical implications of chimpanzee positional behavior. Am J Phys Anthropol 86:521–536

    Article  CAS  PubMed  Google Scholar 

  • Hunt KD (1992) Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe Stream National Parks, Tanzania. Am J Phys Anthropol 87:83–105

    Article  CAS  PubMed  Google Scholar 

  • Hunt KD (2004) The special demands of great ape locomotion and posture. In: Russon AE, Begun DR (eds) The evolution of thought: evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 172–189

    Chapter  Google Scholar 

  • Hunt KD (2016) Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J Anat 228:630–685

    Google Scholar 

  • Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37:363–387

    Article  Google Scholar 

  • Israfil H, Zehr SM, Mootnick AR, Ruvolo M, Steiper ME (2011) Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Mol Phylogenet Evol 58:447–455

    Article  CAS  PubMed  Google Scholar 

  • Jablonski NG, Chaplin G (2009) The fossil record of gibbons. In: Lappan S, Whittaker DJ (eds) The gibbons: new perspectives on small ape socioecology and population biology. Springer, New York, pp 111–130

    Chapter  Google Scholar 

  • Ji X, Jablonski NG, Su DF, Deng C, Flynn LJ, You Y, Kelley J (2013) Juvenile hominoid cranium from the terminal Miocene of Yunnan, China. Chin Sci Bull 58:3771–3779

    Article  CAS  Google Scholar 

  • Jungers WL (1984) Scaling of the hominoid locomotor skeleton with special reference to lesser apes. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes: evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 146–169

    Google Scholar 

  • Jungers WL (1985) Body size and scaling of limb proportions in primates. In: Jungers WL (ed) Size and scaling in primate biology. Plenum Press, New York, pp 345–382

    Chapter  Google Scholar 

  • Jungers WL, Stern JT (1980) Telemetered electromyography of forelimb muscle chains in gibbons (Hylobates lar). Science 208(4444):617–619

    Article  CAS  PubMed  Google Scholar 

  • Kagaya M, Ogihara N, Nakatsukasa M (2008) Morphological study of the anthropoid thoracic cage: scaling of thoracic width and an analysis of rib curvature. Primates 49:89–99

    Article  PubMed  Google Scholar 

  • Kagaya M, Ogihara N, Nakatsukasa M (2009) Rib orientation and implications for orthograde positional behavior in nonhuman anthropoids. Primates 50:305–310

    Article  PubMed  Google Scholar 

  • Kagaya M, Ogihara N, Nakatsukasa M (2010) Is the clavicle of apes long? An investigation of clavicular length in relation to body mass and upper thoracic width. In J Primatol 31:209–217

    Google Scholar 

  • Kano T, Mulavwa M (1983) Feeding ecology of the pygmy chimpanzees (Pan paniscus) of Wamba. In: Susman RL (ed) The pygmy chimpanzee: evolutionary biology and behavior. Plenum Press, New York, pp 275–300

    Google Scholar 

  • Keith A (1891) Anatomical noted on Malay apes. J Straits Br R Asiat Soc 23:77–94

    Google Scholar 

  • Keith A (1899) On the chimpanzees and their relation to the gorilla. Proc Zool Soc Lond 67:296–312

    Article  Google Scholar 

  • Keith A (1903) The extent to which the posterior segments of the body have been transmuted and suppressed in the evolution of man and allied primates. J Anat Physiol 37:18–40

    Google Scholar 

  • Keith A (1923) Man’s posture: its evolution and disorder. Br Med J 1:451–454, 499–502, 545–548, 587–590, 624–626, 669–672

    Google Scholar 

  • Kelley J (2002) The hominoid radiation in Asia. In: Hartwig WL (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 369–384

    Google Scholar 

  • Kikuchi K, Nakatsukasa M, Nakano Y, Kunimatsu Y, Shimizu D, Ogihara N, Tsujikawa H, Takano T, Ishida H (2015) Morphology of the thoracolumbar spine of the middle Miocene hominoid Nacholapithecus kerioi from northern Kenya. J Hum Evol 88:25–42

    Google Scholar 

  • Köhler M, Moyà-Solà S (1997) Ape-like or hominid-like? The positional behavior of Oreopithecus bambolii reconsidered. Proc Nat Acad Sci 94:11747–11750

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert J (2015) Evolutionary biology of ape and monkey feeding and nutrition. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, vol 2. Springer, New York, pp 1631–1660

    Chapter  Google Scholar 

  • Larson S (1988) Subscapularis function in gibbons and chimpanzees: implications for interpretation of humeral head torsion in hominoids. Am J Phys Anthropol 76:449–462

    Article  Google Scholar 

  • Larson SG (1998) Parallel evolution in the hominoid trunk and forelimb. Evol Anthropol 6:87–99

    Article  Google Scholar 

  • Lovejoy CO, Suwa G, Simpson SW, Matternes JH, White TD (2009) The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science 326:73–106

    Article  CAS  Google Scholar 

  • MacLatchy L (2004) The oldest ape. Evol Anthropol 13:90–103

    Article  Google Scholar 

  • MacLatchy LM, Bossert WH (1996) An analysis of the articular surface distribution of the femoral head and acetabulum in anthropoids, with implications for hip function in Miocene hominoids. J Hum Evol 31:425–453

    Article  Google Scholar 

  • MacLatchy LM, Gebo D, Kityo R, Pilbeam D (2000) Postcranial functional morphology of Morotopithecus bishopi, with implications for the evolution of modern ape locomotion. Hum Evol 39:159–183

    Article  CAS  Google Scholar 

  • MacLatchy LM, Rossie JB, Smith TM, Tafforeau P (2010) Evidence for dietary niche separation in the Miocene hominoids Morotopithecus and Afropithecus. Am J Phys Anthropol S 50:160

    Google Scholar 

  • Madar SI, Rose MD, Kelley J, MacLatchy L, Pilbeam D (2002) New Sivapithecus postcranial specimens from the Siwaliks of Pakistan. J Hum Evol 42:705–752

    Article  PubMed  Google Scholar 

  • Manduell KL, Morrogh-Bernard HC, Thorpe SKS (2011) Locomotor behavior of wild orangutans (Pongo pygmaeus wurmbii) in disturbed peat swamp forest, Sabangau, Central Kalimantan, Indonesia. Am J Phys Anthropol 145:348–359

    Article  PubMed  Google Scholar 

  • Manduell KL, Harrison ME, Thorpe SKS (2012) Forest structure and support availability influence orangutan locomotion. Am J Primatol 74:1128–1142

    Article  PubMed  Google Scholar 

  • Matsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene 441:53–66

    Article  CAS  PubMed  Google Scholar 

  • McCrossin ML (1992) An oreopithecid proximal humerus from the middle Miocene of Maboko Island, Kenya. Int J Primatol 13:659–677

    Google Scholar 

  • McCrossin ML, Benefit BR (1997) On the relationship and adaptations of Kenyapithecus, a large-bodied hominoid from the middle Miocene of eastern Africa. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny and fossils: Miocene hominoid origins and adaptations. Plenum Press, New York, pp 241–267

    Chapter  Google Scholar 

  • McNulty KP, Begun DR, Kelley J, Manthi FK, Mbua EN (2015) A systematic revision of Proconsul with the description of a new genus of early Miocene hominoid. J Hum Evol 84:42–61

    Google Scholar 

  • Michilsens F, Vereecke EE, D’Août K, Aerts P (2009) Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle. J Anat 215:335–354

    Google Scholar 

  • Miller ER, Benefit BR, McCrossin ML, Plavcan JM, Leakey MG, El-Barkooky AN, Hamdan MA, Abdel Gawad MK, Hassan SM, Simons EL (2009) Systematics of early and middle Miocene Old World monkeys. J Hum Evol 57:195–211

    Article  CAS  PubMed  Google Scholar 

  • Morgan ME, Lewton KL, Kelley J, Otárola-Castillo E, Barry JC, Flynn LJ, Plbeam D (2015) A partial hominoid innominate from the Miocene of Pakistan: description and preliminary analyses. PNAS 112:82–87

    Article  CAS  PubMed  Google Scholar 

  • Morton DJ (1926) Evolution of man’s erect posture (preliminary report). J Morph Physiol 43:147–179

    Article  Google Scholar 

  • Moyà-Solà S, Köhler M (1996) A Dryopithecus skeleton and the origins of great-ape locomotion. Nature 379:156–169

    Article  PubMed  Google Scholar 

  • Moyà-Solà S, Köhler M, Rook L (1999) Evidence of hominid-like precision grip capability in the hand of the Miocene ape Oreopithecus. Proc Nat Acad Sci 96:313–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyà-Solà S, Köhler M, Alba DM, Casanovas-Vilar I, Galindo J (2004) Pierolapithecus catalaunicus, a new middle Miocene great ape from Spain. Science 306:1339–1344

    Article  PubMed  CAS  Google Scholar 

  • Moyà-Solà S, Köhler M, Alba DM, Casanovas-Vilar I, Galindo J (2005a) Response to comment on Pierolapithecus catalaunicus a new middle Miocene great ape from Spain. Science 308:203d

    Article  Google Scholar 

  • Moyà-Solà S, Köhler M, Rook L (2005b) The Oreopithecus thumb: a strange case in hominoid evolution. J Hum Evol 49:395–404

    Article  PubMed  Google Scholar 

  • Moyà-Solà S, Köhler M, Alba DM, Casanovas-Vilar I, Galindo J, Robles JM, Cabrera L, Garcés M, Almécija S, Beamud E (2009) First partial face and upper dentition of the middle Miocene hominoid Dryopithecus fontani from Abocador de Can Mata (Vallès-Penedès Basin, Catalonia, NE Spain): taxonomic and phylogenetic implications. Am J Phys Anthropol 139:126–145

    Article  PubMed  Google Scholar 

  • Myatt JP, Thorpe SKS (2012) Postural strategies employed by orangutans (Pongo abelii) during feeding in the terminal branch niche. Am J Phys Anthropol 46:73–82

    Article  Google Scholar 

  • Nakatsukasa M (2008) Comparative study of Moroto vertebral specimens. J Hum Evol 56:581–588

    Article  Google Scholar 

  • Nakatsukasa N, Kunimatsu Y (2009) Nacholapithecus and its importance for understanding hominoid evolution. Evol Anthropol 18:103–119

    Article  Google Scholar 

  • Nakatsukasa N, Ward CV, Walker A, Teaford MF, Kunimatsu Y, Ogihara N (2004) Tail loss in Proconsul heseloni. J Hum Evol 46:777–784

    Google Scholar 

  • Napier JR (1967) Evolutionary aspects of primate locomotion. Am J Phys Anthropol 27:333–342

    Article  CAS  PubMed  Google Scholar 

  • Niemitz C (2010) The evolution of the upright posture and gait-a review and synthesis. Naturwissenschaften 97:241–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak MG, Reichard UH (2016) The torso-orthograde positional behavior of wild white-handed gibbons (hylobates lar). In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 203–225

    Google Scholar 

  • Patel BA, Grossman A (2006) Dental metric comparisons of Morotopithecus and Afropithecus: implications for the validity of the genus Morotopithecus. J Hum Evol 51:506–512

    Article  PubMed  Google Scholar 

  • Patel BA, Susman RL, Rossie JB, Hill A (2009) Terrestrial adaptations in the hands of Equatorius africanus revisited. J Hum Evol 57:763–772

    Article  PubMed  Google Scholar 

  • Pawłowski B, Nowaczewska W (2015) Origins of Hominiae and putative slection pressures acting on the early Hominins. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, vol 2. Springer, New York, pp 1887–1918

    Chapter  Google Scholar 

  • Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O’Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7(3):e1001342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickford M (2002) New reconstruction of the Moroto hominoid snout and a reassessment of its affinities to Afropithecus turkanensis. Hum Evol 17:1–19

    Article  Google Scholar 

  • Pickford M, Senut B, Gommery D (1999) Sexual dimorphism in Morotopithecus bishopi, an early middle Miocene hominoid from Uganda, and a reassessment of its geological and biological contexts. In: Andrews P, Banham P (eds) Late Cenozoic environments and hominid evolution: a tribute to Bill Bishop. Geological Society, London, pp 27–38

    Google Scholar 

  • Pilbeam D (1996) Genetic and morphological records of the Hominoidea and hominid origins: a synthesis. Mol Phylogenetic Evol 5:155–168

    Article  CAS  Google Scholar 

  • Pilbeam D, Young N (2001) Sivapithecus and hominoid evolution: some brief comments. In: De Bonis L, Koufos GD, Andrews P (eds) Hominoid evolution and climatic change in Europe, vol 2., Phylogeny of the neogene hominoid primates of EurasiaCambridge University Press, Cambridge, pp 349–364

    Chapter  Google Scholar 

  • Pilbeam D, Young N (2004) Hominoid evolution: synthesizing disparate data. C R Palevol 3:305–321

    Article  Google Scholar 

  • Pilbeam D, Rose MD, Barry JC, Shah SMI (1990) New Sivapithecus humeri from Pakistan and the relationship of Sivapithecus and Pongo. Nature 348:237–239

    Article  CAS  PubMed  Google Scholar 

  • Pina M, Alba DM, Fortuny J, Almécija S, Moyà-Solà S (2012) Brief communication: paleobiological inferences on the locomotor repertoire of extinct hominoids based on femoral neck cortical thickness: the fossil great ape Hispanopithecus laietanus as a test-case study. Am J Phys Anthropol 149:42–48

    Article  Google Scholar 

  • Pina M, Almécija S, Alba DM, O’Neill M, Moyà-Solà S (2014) The middle Miocene ape Pierolapithecus catalaunicus exhibits extant great ape-like morphometric affinities on its patella: inferences on knee function and evolution. PLoS ONE 9:1–10

    Article  CAS  Google Scholar 

  • Preuschoft H (2002) What does “arboreal locomotion” mean exactly and what are the relationships between “climbing”, environment and morphology? Z Morph Anthrop 83:171–188

    Google Scholar 

  • Preuschoft H, Demes H (1984) Biomechanics of brachiation. In: Preuschoft H, Chivers D, Brockelman W, Creel N (eds) The lesser apes: evolutionary and behavioural biology. Edinburgh University Press, Edinburgh, pp 96–118

    Google Scholar 

  • Preuschoft H, Demes B (1985) Influence of size and proportions on the biomechanics of brachiation. In: Jungers WL (ed) Size and scaling in primate biology. Springer, New York, pp 383–399

    Chapter  Google Scholar 

  • Preuschoft H, Witte H, Fischer M (1995) Locomotion in nocturnal prosimians. In: Alterman L, Doyle GA, Izard MK (eds) Creatures of the dark: the nocturnal prosimians. Plenum Press, New York, pp 453–472

    Chapter  Google Scholar 

  • Preuschoft H, Schönwasser K-H, Witzel U (2016) Selective value of characteristic size parameters in hylobatids. A biomechanical approach to small ape size and morphology. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 227–263

    Google Scholar 

  • Qi G, Dong W, Zheng L, Zhao L, Gao F, Yue L, Zhang Y (2006) Taxonomy, age and environment status of the Yuanmou hominoids. Chin Sci Bull 51:704–712

    Article  Google Scholar 

  • Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257

    Article  PubMed  Google Scholar 

  • Rae TC (1999) Mosaic evolution in the origin of the Hominoidea. Folia Primatol 70:125–136

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen DT (2002) Early catarrhines of the African Eocene and Oligocene. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 203–220

    Google Scholar 

  • Remis M (1995) Effects of body size and social context on the arboreal activities of lowland gorillas in the Central African Republic. Am J Phys Anthropol 97:413–433

    Article  CAS  PubMed  Google Scholar 

  • Remis M (1998) The gorilla paradox: the effects of body size and habitat on the positional behavior of lowland and mountain gorillas. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds) Primate locomotion. Plenum Press, New York, pp 95–108

    Chapter  Google Scholar 

  • Reno PL (2014) Genetic and developmental basis for parallel evolution and its significance for hominoid evolution. Evol Anthropol 23:188–200

    Article  PubMed  Google Scholar 

  • Richmond BG, Whalen M (2001) Forelimb function, bone curvature and phylogeny of Sivapithecus. In: De Bonis L, Koufos GD, Andrews P (eds) Hominoid evolution and climatic change in Europe, vol 2., Phylogeny of the neogene hominoid primates of EurasiaCambridge University Press, Cambridge, pp 326–348

    Chapter  Google Scholar 

  • Ripley S (1979) Environmental grain, niche diversification, and positional behavior in Neogene primates: an evolutionary hypothesis. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior, and morphology: dynamic interactions in primates. Gustav Fischer, New York, pp 37–74

    Google Scholar 

  • Rose MD (1991) The process of bipedalization in hominoids. In: Coppens Y, Senut B (eds) Origine(s) de la Bipédie chez les Hominidés. Fodation Singer-Polignac, Paris, pp 37–48

    Google Scholar 

  • Rose MD (1993) Locomotor anatomy of Miocene hominoids. In: Gebo DL (ed) Postcranial adaptations in nonhuman primates. Northern Illinois University Press, DeKalb, pp 252–272

    Google Scholar 

  • Rose MD (1994) Quadrupedalism in some Miocene catarrhines. J Hum Evol 26:387–411

    Article  Google Scholar 

  • Rose MD (1997) Functional and phylogenetic features of the forelimb in Miocene hominoids. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 79–100

    Chapter  Google Scholar 

  • Rossie JB, MacLatchy L (2013) Dentognathic remains of an Afropithecus individual from Kalodirr, Kenya. J Hum Evol 65:199–208

    Article  PubMed  Google Scholar 

  • Ruff CB (2002) Long bone articular and diaphyseal structure in Old World monkeys and apes. I: locomotor effects. Am J Phys Anthropol 119:305–342

    Article  PubMed  Google Scholar 

  • Russo GA (2016) Comparative sacral morphology and the reconstructed tail lengths of five extinct primates: Proconsul heseloni, Epipliopithecus vindobonensis, Archaeolemur edwardsi, Megaladapis grandidieri, and Palaeopropithecus kelyus. J Hum Evol 90:135–162

    Google Scholar 

  • Sanders WJ, Bodenbender BE (1994) Morphometric analysis of lumbar vertebra UMP 67-28: implications for spinal function and phylogeny of the Miocene Moroto hominoid. J Hum Evol 26:203–237

    Article  Google Scholar 

  • Sarringhaus LA, MacLatchy LM, Mitani JC (2014) Locomotor and postural development of wild chimpanzees. J Hum Evol 66:29–38

    Article  CAS  PubMed  Google Scholar 

  • Sati JP, Alfred JRB (2002) Locomotion and posture in hoolock gibbon. Ann For 10:298–306

    Google Scholar 

  • Schultz AH (1930) The skeleton of the trunk and limbs of higher primates. Hum Biol 2:303–438

    Google Scholar 

  • Schultz AH (1973) The skeleton of the Hylobatidae and other observations on their morphology. In: Rumbaugh DM (ed) Gibbon and siamang: a series of volumes on the lesser apes. Anatomy, dentition, taxonomy, molecular evolution, and behavior, vol 2. Karger, Basel, pp 1–54

    Google Scholar 

  • Scotland RW (2011) Deep homology: a view from systematics. BioEssays 32:438–449

    Article  Google Scholar 

  • Sherwood RJ, Ward S, Hill A, Duren DL, Brown B, Downs W (2002) Preliminary description of the Equatorius africanus partial skeleton (KNM-TH 28860) from Kipsaramon, Tugen Hills, Baringo District, Kenya. J Hum Evol 42:63–73

    Article  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  CAS  PubMed  Google Scholar 

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    Article  CAS  PubMed  Google Scholar 

  • Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Sadler T, Stainer C, Ryder OA, Janečka Fischer CA, Murphy WJ (2013) Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS ONE 7(11):e49521

    Article  CAS  Google Scholar 

  • Srikosamatara S (1984) Notes in the ecology and behavior of the hoolock gibbon. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 242–257

    Google Scholar 

  • Steiper ME, Seiffert ER (2012) Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc Nat Acad Sci 109:6006–6011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenetic Evol 41:384–394

    Article  CAS  Google Scholar 

  • Steiper ME, Young NM (2008) Timing primate evolution: lessons from the discordance between molecular and paleontological estimates. Evol Anthropol 17:179–188

    Article  Google Scholar 

  • Stern JT (1971) Functional myology of the hip and thigh of cebid monkeys and its implications for the evolution of erect posture. Biblio Primatol 14:1–319

    Google Scholar 

  • Stern JT (1975) Before bipedality. Yrbk Phys Anthropol 19:59–68

    Google Scholar 

  • Stern JT Jr, Larson SG (2001) Telemetered electromyography of the supinators and pronators of the forearm in gibbons and chimpanzees: implications for the fundamental positional adaptation of hominoids. Am J Phys Anthropol 115:253–268

    Article  PubMed  Google Scholar 

  • Stern JT Jr, Wells JP, Vangor AK, Fleagle JG (1977) Electromyography of some muscles of the upper limb in Ateles and Lagothrix. Yrbk Phys Anthropol 20:498–507

    Google Scholar 

  • Stevens NJ, Seiffert E, O’Connor PM, Roberts EM, Schmitz MD, Krause C, Gorscak E, Ngasala S, Hieronymus TL, Temu J (2013) Paleontological evidence for an Oligocene divergence between Old World monkeys and apes. Nature 497:611–614

    Article  CAS  PubMed  Google Scholar 

  • Su DF, Jablonski NG (2009) Locomotor behavior and skeletal morphology of the odd-nosed monkeys. Folia Primatol 80:189–219

    Article  PubMed  Google Scholar 

  • Sugardjito J, van Hooff JARAM (1986) Age-sex class differences in the positional behaviour of the Sumatran orang-utan (Pongo pygmaeus abelii) in the Gunung Leuser National Park, Indonesia. Folia Primatol 47:14–25

    Article  CAS  PubMed  Google Scholar 

  • Susanna I, Alba DM, Almécija S, Moyà-Solà S (2014) The vertebral remains of the late Miocene great ape Hispanopithecus laietanus from Can Llobateres 2 (Vallés-Penedés Basin, NE Iberian Peninsula). J Hum Evol 73:15–34

    Article  PubMed  Google Scholar 

  • Sussman RW (1991) Primate origins and the evolution of angiosperms. Am J Primatol 23:209–223

    Article  Google Scholar 

  • Takahashi LK (1990) Morphological basis of arm-swinging: multivariate analysis of the forelimbs of Hylobates and Ateles. Folia Primatol 54:70–85

    Article  CAS  PubMed  Google Scholar 

  • Takahashi LK (1991) Forearm elongation in gibbons: hypothesis and preliminary results. Int J Primatol 12:599–614

    Article  Google Scholar 

  • Tallman M, Almécija S, Reber SL, Alba DM, Moyà-Solà S (2013) The distal tibia of Hispanopithecus laietanus: more evidence for mosaic evolution in Miocene apes. J Hum Evol 64:319–327

    Article  PubMed  Google Scholar 

  • Temerin A, Cant JGH (1983) The evolutionary divergence of old world monkeys and apes. Am Nat 122:335–351

    Article  Google Scholar 

  • Thinh VN, Mootnick AR, Geissmann T, Li M, Ziegler T, Agil M, Moisson P, Nadler T, Walter L, Roos C (2010) Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol 10:74–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorpe SKS, Crompton RH (2005) Locomotor ecology of wild orangutans (Pongo pygmaeus abelii) in the Gunung Leuser Ecosystem, Sumatra, Indonesia: a multivariate analysis using log-linear modeling. Am J Phys Anthropol 127:58–78

    Article  PubMed  Google Scholar 

  • Thorpe SKS, Crompton RH (2006) Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am J Phys Anthropol 131:384–401

    Article  PubMed  Google Scholar 

  • Thorpe SKS, Crompton RH (2009) Orangutan positional behavior. In: Wich SA, Utami Atmoko SS, Mitra Setia T, van Schaik CP (eds) Orangutans: geographic variation in behavioral ecology and conservation. Oxford University Press, Oxford, pp 33–48

    Google Scholar 

  • Tuttle RH (1974) Darwin’s apes, dental apes, and the descent of man: normal science in evolutionary anthropology. Curr Anthropol 15:389–426

    Article  Google Scholar 

  • Tuttle RH, Watts DP (1985) The positional behavior and adaptive complexes of Pan gorilla. In: Kondo S (ed) Primate morphophysiology, locomotor analyses and human bipedalism. University of Tokyo Press, Tokyo, pp 261–288

    Google Scholar 

  • Tyler DE (1991) The problems of the Pliopithecidae as a hylobatid ancestor. Hum Evol 6:73–80

    Article  Google Scholar 

  • van Casteren A, Sellers WL, Thorpe SKS, Coward S, Crompton RH, Roland Ennos A (2013) Factors affecting the compliance and sway properties of tree branches used by the Sumatran orangutan (Pongo abelii). PLoS ONE 8(7):e67877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wake DB, Wake MH, Specht CD (2011) Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331:1032–1035

    Article  CAS  PubMed  Google Scholar 

  • Ward CV (1997a) Functional anatomy and phyletic implications of the hominoid trunk and hindlimb. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 101–130

    Chapter  Google Scholar 

  • Ward S (1997b) The taxonomy and phylogenetic relationships of Sivapithecus revisited. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: miocene hominoid evolution and adaptations. Plenum Press, New York, pp 269–290

    Chapter  Google Scholar 

  • Ward CV (1998) Afrpithecus, Pronconsul, and the primitive hominoid skeleton. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds) Primate locomotion: recent advances. Plenum Press, New York, pp 337–352

    Chapter  Google Scholar 

  • Ward CV (2002) Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Yearb Phys Anthropol 45:185–215

    Article  Google Scholar 

  • Ward CV (2015) Postcranial and locomotor adaptations of hominoids. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, vol 2. Springer, New York, pp 1363–1387

    Chapter  Google Scholar 

  • Ward CV, Walker A, Teaford MF (1991) Proconsul did not have a tail. J Hum Evol 21:215–220

    Article  Google Scholar 

  • Washburn SL (1950) The analysis of primate evolution with particular reference to the origin of man. Cold Spring Harb Symp Quant Biol 15:67–78

    Article  CAS  PubMed  Google Scholar 

  • Washburn SL, Avis V (1958) Evolution and human behavior. In: Simpson GG, Roe A (eds) Behavior and evolution. Yale University Press, New Haven, pp 421–436

    Google Scholar 

  • Wheatley BP (1982) Energetics of foraging in Macaca fascicularis and Pongo pygmaeus and a selective advantage of large body size in the orang-utan. Primates 23:348–363

    Article  Google Scholar 

  • Wheatley BP (1987) The evolution of large body size in orangutans: a model for hominoid divergence. Am J Primatol 13:313–324

    Article  Google Scholar 

  • Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavare S (2011) Dating primate divergences through an integrated analysis of paleontological and molecular data. Syst Biol 60:16–31

    Article  CAS  PubMed  Google Scholar 

  • Williams SA, Russo GA (2015) Evolution of the hominoid vertebral column: the long and the short of it. Evol Anthropol 24:15–32

    Google Scholar 

  • Wood B, Harrison T (2011) The evolutionary context of the first hominins. Nature 470:347–352

    Article  CAS  PubMed  Google Scholar 

  • Xijun N, Zhuding Q (2002) The micromammalian fauna from the Leilao, Yuanmou hominoid locality: implications for biochronology and paleoecology. J Hum Evol 42:535–546

    Article  PubMed  Google Scholar 

  • Youlatos D (2008) Locomotion and positional behavior of spider monkeys. In: Campbell CJ (ed) Spider monkeys: behavior, ecology, and evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 185–219

    Chapter  Google Scholar 

  • Young NM (2003) A reassessment of living hominoid postcranial variability: implications for ape evolution. J Hum Evol 45:441–464

    Article  PubMed  Google Scholar 

  • Young NM (2008) A comparison of the ontogeny of shape variance in the anthropoid scapula: functional and phylogenetic signal. Am J Phys Anthropol 136:247–264

    Article  PubMed  Google Scholar 

  • Young NM, MacLatchy L (2004) The phylogenetic position of Morotopithecus. J Hum Evol 46:163–184

    Article  PubMed  Google Scholar 

  • Zalmout IS, Sanders WJ, MacLatchy LM, Gunnell GF, Al-Mufarreh YA, Ali MA, Nasser AAH, Al-Masari AM, Al-Sobhi SA, Nadhra AO, Matari AH, Wilson JA, Gingerich PD (2010) New Oligocene primate from Saudi Arabia and the divergence of apes and Old World monkeys. Nature 466:360–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter greatly benefited from field studies on Sumatran Hylobates agilis and Symphalangus syndactylus, which would not have been possible without the assistance of an NSF Doctoral Dissertation Improvement Grant (BCS 1061477 awarded to MGN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nowak, M.G., Reichard, U.H. (2016). Locomotion and Posture in Ancestral Hominoids Prior to the Split of Hylobatids. In: Reichard, U., Hirai, H., Barelli, C. (eds) Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5614-2_3

Download citation

Publish with us

Policies and ethics