Skip to main content

Part of the book series: Springer Texts in Statistics ((STS))

  • 5223 Accesses

Abstract

This chapter develops the theory of optimal parametric tests. The Neyman–Pearson Lemma provides the most powerful test of any given size for a simple null hypothesis H 0 against a simple alternative hypothesis H 1. For one parameter exponential models such tests are uniformly most powerful (UMP) against one-sided alternatives. For two-sided alternatives here one obtains a UMP test among all unbiased tests of a given size. In multiparameter exponential models one may similarly obtain UMP unbiased tests in the presence of nuisance parameters. For statistical models which are invariant under a group of transformations all reasonable tests should be invariant under the group. The theory of UMP tests among all invariant tests is developed for linear models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Ferguson (1967, pp. 215–221).

  2. 2.

    Note. Since \((\overline{X} -\overline{Y })/\sigma \sqrt{ \frac{1} {m} + \frac{1} {n}}\) is N(0, 1) and independent of the chi-square random variables \(U =\sum (X_{j} -\overline{X})^{2}/\sigma ^{2} +\sum (Y _{i} -\overline{Y })^{2}/\sigma ^{2}\) (having d.f. \(m - 1 + n - 2 = m + n - 2\)), by definition, \([(\overline{X} -\overline{Y })/\sigma \sqrt{ \frac{1} {m} - \frac{1} {n}}]/\sqrt{U/(m + n - 2)}\) has Student’s distribution with \(m + n - 2\) d.f.

References

  • Anderson, T. W. (1958). An introduction to multivariate analysis (1st ed.). New York: Wiley.

    MATH  Google Scholar 

  • Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhya, 15, 377–380.

    MATH  MathSciNet  Google Scholar 

  • Basu, D. (1959). The family of ancillary statistics. Sankhya, 21, 247–256.

    MATH  MathSciNet  Google Scholar 

  • Bose, R. C., & Ray-Chaudhuri, D. K. (1960). On a class of error-correcting binary codes. Information and Control, 3, 68–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Bose, R. C., Shrikhande, S. S., & Parker, E. T. (1960). Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canadian Journal of Mathematics, 12, 189–203.

    Article  MATH  MathSciNet  Google Scholar 

  • Ferguson, T. (1967). Mathematical statistics: A decision theoretic approach. Boston: Academic.

    MATH  Google Scholar 

  • Fisher, R. A. (1925). Statistical methods for research workers (1st ed.). Edinburgh: Oliver and Boyd.

    MATH  Google Scholar 

  • Fisher, R. A. (1935). The design of experiments (1st ed.). Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Hocquenghem, A. (1959). Codes correcteurs d’erreurs. Chiffres (in French) (Paris), 2, 147–156.

    MATH  MathSciNet  Google Scholar 

  • Hunt, G., & Stein, C. (1946). Most stringent tests of statistical hypotheses. Unpublished manuscript.

    Google Scholar 

  • Kiefer, J. (1957). Invariance, minimax sequential estimation, and continuous time processes. Annals of Mathematical Statistics, 28, 573–601.

    Article  MATH  MathSciNet  Google Scholar 

  • Lehmann, E. L. (1959). Testing statistical hypotheses (1st ed.). New York: Wiley.

    MATH  Google Scholar 

  • Neyman, J., & Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A, 231, 289–337.

    Article  MATH  Google Scholar 

  • Neyman, J., & Pearson, E. S. (1936). Contributions to the theory of testing statistical hypotheses. Part I. Unbiased critical regions of type A and type A 1. Statistical Research Memoirs, 1, 1–37.

    Google Scholar 

  • Neyman, J., & Pearson, E. S. (1938). Contributions to the theory of testing statistical hypotheses. Part II. Certain theorems on unbiased critical regions of type A. Part III. Unbiased tests of simple statistical hypotheses specifying the values of more than one unknown parameter. Statistical Research Memoirs, 2, 25–57.

    MATH  Google Scholar 

  • Pitman, E. J. G. (1939). The estimation of location and scale parameters of a continuous population of any given form. Biometrika, 30, 391–421.

    Article  MATH  Google Scholar 

  • Rao, C. R. (1952). Advanced statistical methods in biometric research. New York: Wiley.

    MATH  Google Scholar 

  • ScheffĂ©, H. (1959). Analysis of variance. New York: Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag New York

About this chapter

Cite this chapter

Bhattacharya, R., Lin, L., Patrangenaru, V. (2016). Testing Hypotheses. In: A Course in Mathematical Statistics and Large Sample Theory. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4032-5_5

Download citation

Publish with us

Policies and ethics