Skip to main content

An Overview of Powder X-ray Diffraction and Its Relevance to Pharmaceutical Crystal Structures

  • Chapter
  • First Online:
Analytical Techniques in the Pharmaceutical Sciences

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Single-crystal X-ray diffraction is one of the most powerful methods for the analysis of crystalline materials, but as active pharmaceutical ingredients are typically processed in the form of polycrystalline powders, powder X-ray diffraction assumes a particularly important role in their analysis. This chapter, which is targeted at pharmaceutical scientists, presents a brief introduction to the technique, before discussing the various ways in which it can be used to probe crystal structures, with a particular emphasis on the practicalities of data collection in the laboratory and on data analysis, leading ultimately to high-quality, refined crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A single crystal diffracts X-rays in three dimensions. A powder sample is ideally a random distribution of tiny single crystals, resulting in an orientationally averaged diffraction pattern in which reflections with identical d-spacings appear at identical 2θ values in the PXRD pattern.

  2. 2.

    This can be seen in Fig. 8.7, where the tick marks lying on the x-axis indicate the positions of reflections in the diffraction pattern.

  3. 3.

    A primary monochromator selects a particular X-ray wavelength prior to it being incident upon the sample.

  4. 4.

    Instrumental resolution is frequently quoted in terms of the ‘full width at half maximum’ (FWHM) of a reflection obtained from a very sharply diffracting standard sample, when the instrumental contribution to the observed peak width exceeds that of the sample itself.

  5. 5.

    The output of the indexing program DICVOL91 includes the following line in its text output: “WARNING: ARE YOUR DATA IRREPROACHABLE?”.

  6. 6.

    These are reflections that are predicted to appear for a unit cell with no space group symmetry, but which fail to appear in the diffraction pattern due to the effect of the underlying space group symmetry. Thus systematic absences can be used to help determine the space group symmetry.

  7. 7.

    The extinction symbol summarises the symmetry elements that are consistent with the observed systematic absences. Note that an extinction symbol can be consistent with more than one space group.

  8. 8.

    For simplicity, we will consider only Pawley refinements here, whilst noting that the closely related Le Bail method of PXRD profile fitting can be used to the same end.

  9. 9.

    The number of crystallographically independent molecules in the asymmetric unit of the unit cell.

  10. 10.

    The structural DoF for a molecular organic molecule are divided into external DoF (i.e. three positional and three orientational) and internal (i.e. the number of torsion angles that are free to rotate). Covalent bond lengths and bond angles are generally treated as fixed, well-defined quantities and so it is values for the various DoF that must be determined in order to solve the crystal structure.

  11. 11.

    Typical errors in construction of the input molecular model include the incorrect specification of chirality, cis-trans isomerism, N-atom pyramidalisation and flexible ring conformations.

  12. 12.

    Hydrogen atoms are sometimes poorly positioned in initial structure solutions, as a consequence of their weak contribution to the observed diffraction.

  13. 13.

    A free refinement is defined here as one in which the xyz coordinates of each non-H atom in the asymmetric unit of the crystal structure are free to refine as least-squares variables. Thus a 35 non-H atom structure would have 105 least-squares variables to describe the atomic positions alone.

References

  • Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388. doi:10.1107/s0108768102003890

    Article  PubMed  Google Scholar 

  • Allen FH, Johnson O, Shields GP, Smith BR, Towler M (2004) CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs. J Appl Crystallogr 37:335–338. doi:10.1107/s0021889804003528

    Article  CAS  Google Scholar 

  • Altomare A, Camalli M, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R (2009) EXPO2009: structure solution by powder data in direct and reciprocal space. J Appl Crystallogr 42(6):1197–1202. doi:10.1107/S0021889809042915

    Article  CAS  Google Scholar 

  • Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R (2012) COVMAP: a new algorithm for structure model optimization in the EXPO package. J Appl Crystallogr 45(4):789–797. doi:10.1107/S002188981201953X

    Article  CAS  Google Scholar 

  • Antonio SG, Benini FR, Ferreira FF, Pires Rosa PC, Paiva-Santos CDO (2011) Quantitative phase analyses through the Rietveld method with X-ray powder diffraction data of heat-treated carbamazepine form III. J Pharm Sci 100(7):2658–2664. doi:10.1002/jps.22482

    Article  CAS  PubMed  Google Scholar 

  • Barr G, Dong W, Gilmore CJ (2009) PolySNAP3: a computer program for analysing and visualizing high-throughput data from diffraction and spectroscopic sources. J Appl Crystallogr 42:965–974. doi:10.1107/s0021889809025746

    Article  CAS  Google Scholar 

  • Brittain HG (2001) X-ray diffraction III: pharmaceutical applications of x-ray powder diffraction. Spectroscopy 16(7):14–18

    CAS  Google Scholar 

  • Bruno IJ, Cole JC, Kessler M, Luo J, Motherwell WDS, Purkis LH, Smith BR, Taylor R, Cooper RI, Harris SE, Orpen AG (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44(6):2133–2144. doi:10.1021/ci049780b

    Article  CAS  PubMed  Google Scholar 

  • ChemAxon (2013) Marvin, 5.4.1.1 edn. ChemAxon

    Google Scholar 

  • Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220(5–6):567–570. doi:10.1524/zkri.220.5.567.65075

    CAS  Google Scholar 

  • Coelho A (2003) TOPAS user manual, v3.1 edn. Bruker AXS GmbH, Karlsruhe

    Google Scholar 

  • Davey RJ, Maginn SJ, Andrews SJ, Black SN, Buckley AM, Cottier D, Dempsey P, Plowman R, Rout JE, Stanley DR, Taylor A (1994) Morphology and polymorphism in molecular-crystals—terephthalic acid. J Chem Soc-Faraday Trans 90(7):1003–1009. doi:10.1039/ft9949001003

    Article  CAS  Google Scholar 

  • David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) DASH: a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915. doi:10.1107/s0021889806042117

    Article  CAS  Google Scholar 

  • Dykhne T, Taylor R, Florence A, Billinge SJL (2011) Data requirements for the reliable use of atomic pair distribution functions in amorphous pharmaceutical fingerprinting. Pharm Res 28(5):1041–1048. doi:10.1007/s11095-010-0350-0

    Article  CAS  PubMed  Google Scholar 

  • Engel GE, Wilke S, Konig O, Harris KDM, Leusen FJJ (1999) PowderSolve—a complete package for crystal structure solution from powder diffraction patterns. J Appl Crystallogr 32(6):1169–1179. doi:10.1107/S0021889899009930

    Article  CAS  Google Scholar 

  • Favre-Nicolin V, Černý R (2004) A better FOX: using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z Kristallogr Cryst Mater 219(12):847–856. doi:10.1524/zkri.219.12.847.55869

    Article  CAS  Google Scholar 

  • Florence AJ (2009) Approaches to high-throughput physical form screening and discovery. In: Brittain HG (ed) Polymorphism in pharmaceutical solids, 2nd edn. Informa Healthcare, New York

    Google Scholar 

  • Florence AJ, Shankland K, Gelbrich T, Hursthouse MB, Shankland N, Johnston A, Fernandes P, Leech CK (2008) A catemer-to-dimer structural transformation in cyheptamide. CrystEngComm 10(1):26–28. doi:10.1039/b712547j

    Article  CAS  Google Scholar 

  • Hofmann DWM (2002) Fast estimation of crystal densities. Acta Crystallogr B 58:489–493. doi:10.1107/s0108768101021814

    Article  PubMed  Google Scholar 

  • Ivanisevic I, McClurg RB, Schields PJ (2010) Uses of X-ray powder diffraction in the pharmaceutical industry. In: Gad SC (ed) Pharmaceutical Sciences Encyclopedia. Wiley, New York. doi:10.1002/9780470571224.pse414

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report

    Google Scholar 

  • Lemmerer A, Bernstein J, Griesser UJ, Kahlenberg V, Toebbens DM, Lapidus SH, Stephens P, Esterhuysen C (2011) A tale of two polymorphic pharmaceuticals: pyrithyldione and propyphenazone and their 1937 co-crystal patent. Chemistry 17(48):13445–13460. doi:10.1002/chem.201100667

    Article  CAS  PubMed  Google Scholar 

  • Looijenga-Vos A, Buerger MJ (2005) Determination of space groups. In: Hahn T (ed) International tables for crystallography, volume A: space-group symmetry, 5th edn. Springer, Dordrecht

    Google Scholar 

  • Louer D (2002) Laboratory X-ray powder diffraction. In: David WIF, Shankland K, McCusker LB, Baerlocher C (eds) Structure determination from powder diffraction data. Oxford University Press, Oxford

    Google Scholar 

  • Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. doi:10.1107/s0021889807067908

    Article  CAS  Google Scholar 

  • Markvardsen AJ, David WIF, Johnston JC, Shankland K (2012) A probabilistic approach to space-group determination from powder diffraction data (vol A57, pg 47, 2001). Acta Crystallogr A 68:780. doi:10.1107/s0108767312038305

    Article  CAS  Google Scholar 

  • Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, Ellis S, Cima MJ, Gardner CR (2004) High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 56(3):275–300. doi:10.1016/j.addr.2003.10.020

    Article  CAS  PubMed  Google Scholar 

  • Ooi L (2009) Principles of X-ray crystallography. Oxford University Press, Oxford

    Google Scholar 

  • Pagola S, Stephens PW (2010) PSSP, a computer program for the crystal structure solution of molecular materials from X-ray powder diffraction data. J Appl Crystallogr 43(2):370–376. doi:10.1107/S0021889810005509

    Google Scholar 

  • PANalytical (2014) X’Pert HighScore Plus PANalytical B.V.

    Google Scholar 

  • Pecharsky VK, Zavalij PY (2005) Fundamentals of powder diffraction and structural characterization of materials. Springer, New York

    Google Scholar 

  • Randall C, Rocco W, Ricou P (2010) XRD in pharmaceutical analysis: a versatile tool for problem-solving. Am Pharm Rev 13:52–59

    CAS  Google Scholar 

  • Rodriguez-Carvajal J (1993) Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192(1–2):55–69. doi:10.1016/0921-4526(93)90108-i

    Article  CAS  Google Scholar 

  • Shankland K, David WIF, Sivia DS (1997) Routine ab initio structure determination of chlorothiazide by X-ray powder diffraction using optimised data collection and analysis strategies. J Mater Chem 7(3):569–572. doi:10.1039/a606998c

    Article  CAS  Google Scholar 

  • Shankland K, Spillman MJ, Kabova EA, Edgeley DS, Shankland N (2013) The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Crystallogr C 69:1251–1259. doi:10.1107/s0108270113028643

    Article  CAS  PubMed  Google Scholar 

  • Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65:148–155. doi:10.1107/s090744490804362x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner P-E (2002) Autoindexing. In: David WIF, Shankland K, McCusker LB, Baerlocher C (eds) Structure determination from powder diffraction data. Oxford University Press, Oxford

    Google Scholar 

  • Young RA (ed) (1995) The Rietveld method. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the many long-standing collaborations that have contributed to his work in the area of PXRD, but in particular those with Bill David, Tony Csoka, Anders Markvardsen, Alastair Florence, Norman Shankland and the staff of the Cambridge Crystallographic Data Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Shankland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Shankland, K. (2016). An Overview of Powder X-ray Diffraction and Its Relevance to Pharmaceutical Crystal Structures. In: Müllertz, A., Perrie, Y., Rades, T. (eds) Analytical Techniques in the Pharmaceutical Sciences. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4029-5_8

Download citation

Publish with us

Policies and ethics