Advertisement

Applications of Mass Spectrometry in Drug Development Science

  • Ulrike Leurs
  • Ulrik H. Mistarz
  • Kasper D. RandEmail author
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Mass spectrometry (MS) offers the capability to identify, characterize and quantify a target molecule in a complex sample matrix and has developed into a premier analytical tool in drug development science. Through specific MS-based workflows including customized sample preparation, coupling to liquid chromatography and different ionization principles, both qualitative and quantitative analysis of small and large drug compounds can be achieved at an unprecedented sensitivity.

Here, we review the basic principles of MS and tandem MS, including ionization, mass analysis and detection, as well as fragmentation techniques and coupling of MS to chromatographic separation. As the structural integrity of protein drugs during purification, formulation and delivery is of critical importance to ensure drug efficacy and safety, an overview over current approaches for primary and higher-order structure analysis of proteins by mass spectrometry will be given as well as related workflows for quantitative MS analysis. Established “top-down” and “bottom-up” protein analyses with MS will be recapitulated, and the use of emerging technologies such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) for higher-order protein structure analysis will be discussed.

Keywords

Qualitative and quantitative mass spectrometry Small molecules and protein biopharmaceuticals Higher-order structure (HOS) elucidation Hydrogen/deuterium exchange mass spectrometry (HDX-MS) Pharmacokinetics and mass spectrometry 

References

  1. Ardrey RE (2003) Liquid chromatography-mass spectrometry: an introduction. Wiley, New YorkCrossRefGoogle Scholar
  2. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52PubMedPubMedCentralGoogle Scholar
  3. Armbruster DA, Tillman MD, Hubbs LM (1994) Limit of detection (Lod) limit of quantitation (Loq)—comparison of the empirical and the statistical, methods exemplified with GC-MS assays of abused drugs. Clin Chem 40(7):1233–1238PubMedGoogle Scholar
  4. Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17(1):75–86CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brown RS, Lennon JJ (1995) Sequence-specific fragmentation of matrix-assisted laser-desorbed protein peptide ions. Anal Chem 67(21):3990–3999CrossRefPubMedGoogle Scholar
  6. Campins-Falco P, Herraez-Hernandez R, Sevillano-Cabeza A (1993) Column-switching techniques for high-performance liquid chromatography of drugs in biological samples. J Chromatogr 619(2):177–190CrossRefPubMedGoogle Scholar
  7. Chen G, Warrack BM, Goodenough AK, Wei H, Wang-Iverson DB, Tymiak AA (2011) Characterization of protein therapeutics by mass spectrometry: recent developments and future directions. Drug Discov Today 16(1–2):58–64CrossRefPubMedGoogle Scholar
  8. Cole RB (2010) Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Wiley, OxfordCrossRefGoogle Scholar
  9. Corradini E, Klaasse G, Leurs U, Heck AJ, Martin NI, Scholten A (2015) Charting the interactome of PDE3A in human cells using an IBMX based chemical proteomics approach. Mol Biosyst 11(10):2783–2797CrossRefGoogle Scholar
  10. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2(7):566–580CrossRefPubMedGoogle Scholar
  11. Gjelstad A, Pedersen-Bjergaard S (2013) Challenges and new directions in analytical sample preparation. Anal Bioanal Chem 406:375–376CrossRefGoogle Scholar
  12. Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2(2):140–150CrossRefPubMedGoogle Scholar
  13. Hardouin J (2007a) Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom Rev 26(5):672–682CrossRefPubMedGoogle Scholar
  14. Herman JL, Edge T, Majors RE (2012) Theoretical concepts and applications of turbulent flow chromatography. LCGC North America 30(3):200–214Google Scholar
  15. Hillenkamp F, Peter-Katalini J (2007) MALDI MS: a practical guide to instrumentation, methods and applications. Weinheim, Wiley-VCH; [Chichester : John Wiley [distributor]]CrossRefGoogle Scholar
  16. Hoffmann ED, Stroobant V (2007) Mass spectrometry: principles and applications. Wiley, Hoboken, NJ; Chichester: John Wiley [distributor]Google Scholar
  17. Holcapek M, Jirasko R, Lisa M (2012) Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A 1259:3–15CrossRefPubMedGoogle Scholar
  18. Houde D, Engen JR (2013) Conformational analysis of recombinant monoclonal antibodies with hydrogen/deuterium exchange mass spectrometry. Methods Mol Biol 988:269–289CrossRefPubMedPubMedCentralGoogle Scholar
  19. Houde DJ, Berkowitz SA (2015) Biophysical characterization of proteins in developing biopharmaceuticals. D. J. H. A. Berkowitz. Elsevier, AmsterdamGoogle Scholar
  20. Hunt DF, Coon JJ, Syka JEP, Marto JA (2005). Electron transfer dissociation for biopolymer sequence analysis. US 11079147Google Scholar
  21. Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14(1):87–95CrossRefPubMedGoogle Scholar
  22. Jennings KR (1968) Collision-induced decompositions of aromatic molecular ions. Int J Mass Spectrom Ion Phys 1(3):227–235CrossRefGoogle Scholar
  23. Jensen PF, Larraillet V, Schlothauer T, Kettenberger H, Hilger M, Rand KD (2015) Investigating the interaction between the neonatal Fc receptor and monoclonal antibody variants by hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 14(1):148–161CrossRefPubMedGoogle Scholar
  24. Joyce KB, Jones AE, Scott RJ, Biddlecombe RA, Pleasance S (1998) Determination of the enantiomers of salbutamol and its 4-O-sulphate metabolites in biological matrices by chiral liquid chromatography tandem mass spectrometry. Rapid Commun Mass Spectrom 12(23):1899–1910CrossRefPubMedGoogle Scholar
  25. Karas M, Bahr U (1990) Laser desorption ionization mass spectrometry of large biomolecules. Trends Anal Chem 9(10):321–325CrossRefGoogle Scholar
  26. Koppenaal DW, Barinaga CJ, Denton MB, Sperline RP, Hieftje GM, Schilling GD, Andrade FJ, Barnes JH (2005) MS detectors. Anal Chem 77(21):418A–427ACrossRefPubMedGoogle Scholar
  27. Korfmacher WA, Palmer CA, Nardo C, Dunn-Meynell K, Grotz D, Cox K, Lin CC, Elicone C, Liu C, Duchoslav E (1999) Development of an automated mass spectrometry system for the quantitative analysis of liver microsomal incubation samples: a tool for rapid screening of new compounds for metabolic stability. Rapid Commun Mass Spectrom 13(10):901–907CrossRefPubMedGoogle Scholar
  28. Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6(4):281–294CrossRefPubMedGoogle Scholar
  29. Leurs U, Mistarz UH, Rand KD (2015) Getting to the core of protein pharmaceuticals—comprehensive structure analysis by mass spectrometry. Eur J Pharm Biopharm 93:95–109CrossRefPubMedGoogle Scholar
  30. Li Y, Shin YG, Yu C, Kosmeder JW, Hirschelman WH, Pezzuto JM, van Breemen RB (2003) Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: application to resveratrol absorption and metabolism. Comb Chem High Throughput Screen 6(8):757–767CrossRefPubMedGoogle Scholar
  31. Lim MS, Elenitoba-Johnson KS (2004) Proteomics in pathology research. Lab Invest 84(10):1227–1244CrossRefPubMedGoogle Scholar
  32. Little TA (2015) Method validation essentials, limit of blank, limit of detection, and limit of quantitation. Biopharm Int 28(4):48–51Google Scholar
  33. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72(6):1156–1162CrossRefPubMedGoogle Scholar
  34. Marshall AG, Hendrickson CL, Shi SD (2002) Scaling MS plateaus with high-resolution FT-ICRMS. Anal Chem 74(9):252A–259ACrossRefPubMedGoogle Scholar
  35. Pandit D, Tuske SJ, Coales SJ, E SY, Liu A, Lee JE, Morrow JA, Nemeth JF, Hamuro Y (2012) Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 25(3):114–124CrossRefPubMedGoogle Scholar
  36. Payan MD, Li B, Petersen NJ, Jensen H, Hansen SH, Pedersen-Bjergaard S (2013) Nano-electromembrane extraction. Anal Chim Acta 785:60–66CrossRefPubMedGoogle Scholar
  37. Reynolds A (1961) Dynamics of turbulent vortical flow. Z Angew Math Phys 12(2):149–158CrossRefGoogle Scholar
  38. Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5(9):616–624CrossRefPubMedGoogle Scholar
  39. Roepstorff P, Fohlman J (1984) Proposal for a nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601CrossRefPubMedGoogle Scholar
  40. Ryhage R (1964) Use of mass spectrometer as detector+analyzer for effluents emerging from high temperature gas liquid chromatography columns. Anal Chem 36(4):759–764CrossRefGoogle Scholar
  41. Siuzdak G (1994) The emergence of mass spectrometry in biochemical research. Proc Natl Acad Sci U S A 91(24):11290–11297CrossRefPubMedPubMedCentralGoogle Scholar
  42. Smith RD, Udseth HR, Loo JA, Wright BW, Ross GA (1989) Sample introduction and separation in capillary electrophoresis, and combination with mass spectrometric detection. Talanta 36(1–2):161–169CrossRefPubMedGoogle Scholar
  43. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tao L, Ackerman M, Wu W, Liu P, Russell R (2011) Characterization of impurities and degradants using mass spectrometry. Wiley, HobokenGoogle Scholar
  45. van den Broek I, Niessen WMA, van Dongen WD (2013) Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. J Chromatogr B 929:161–179CrossRefGoogle Scholar
  46. Wanner KT, Höfner G (2007) Mass spectrometry in medicinal chemistry. Weinheim, Wiley-VCH; Chichester : John Wiley [distributor]CrossRefGoogle Scholar
  47. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2(4):522–531CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zheng J (2009) Formulation and analytical development for low-dose oral drug products. Wiley, New YorkCrossRefGoogle Scholar
  49. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72(3):563–573CrossRefPubMedGoogle Scholar
  50. Zubarev RA, Kruger NA, Fridriksson EK, Lewis MA, Horn DM, Carpenter BK, McLafferty FW (1999) Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J Am Chem Soc 121:2857–2862CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  • Ulrike Leurs
    • 1
  • Ulrik H. Mistarz
    • 1
  • Kasper D. Rand
    • 1
    Email author
  1. 1.Department of Pharmacy, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations