Advertisement

Application of Cell Culture and Tissue Models for Assessing Drug Transport

  • Carsten Uhd NielsenEmail author
  • Birger Brodin
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Drug transport in the body is a necessary step, from dosage form administration to the pharmacological target of the drug substance. Absorption (A), distribution (D), metabolism (M) and Excretion (E), i.e. ADME properties of drug substances, all include elements of drug transport. Cell culture and tissue-based models are often used to predict drug ADME properties, and to gain mechanistic insight into these. In the present chapter, the kinetics of drug transport and transport via drug transporters is described. The most common cell culture model for studying intestinal transport, i.e. the Caco-2 cell model is described in detail, and protocols for culturing and studying Caco-2 cells are included as an Appendix. Drug transport via carriers and transporters are important for drug substance ADME properties, and proton-coupled drug transport via the amino acid and peptide transporters PAT1 and PEPT1 in Caco-2 cells are discussed. Renal and hepatic models are also mentioned, as well as in vitro models of the blood brain barrier, which are discussed in more details. Even though in vitro models are easy to use and provide relatively reproducible results, areas of concerns and potential pitfalls are highlighted.

Keywords

Caco-2 cells Solute carriers (SLC) ABC-transporters Blood brain barrier ADME In vitro models Papp Drug transport PAT1 PEPT1 

Notes

Acknowledgement

The cell culture facility at the Department of Pharmacy (Maria Diana Læssøe Pedersen) is acknowledged for providing information for the appended Caco-2 cell protocol.

References

  1. Abbott J (2014) In vitro models of CNS barriers. In: Hammarlund-Udenaes M (ed) Drug delivery to the brain: Physiological concepts, methodologies and approaches. Springer, New YorkGoogle Scholar
  2. Amtorp O (1980) Estimation of capillary-permeability of inulin, sucrose and mannitol in rat-brain cortex. Acta Physiol Scand 110:337–342CrossRefPubMedGoogle Scholar
  3. Anderberg EK, Nystrom C, Artursson P (1992) Epithelial transport of drugs in cell culture. VII: Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J Pharm Sci 81:879–887CrossRefPubMedGoogle Scholar
  4. Antherieu S, Chesne C, Li R, Guguen-Guillouzo C, Guillouzo A (2012) Optimization of the HepaRG cell model for drug metabolism and toxicity studies. Toxicol In Vitro 26:1278–1285CrossRefPubMedGoogle Scholar
  5. Antunes F, Andrade F, Araujo F, Ferreira D, Sarmento B (2013) Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm 83:427–435CrossRefPubMedGoogle Scholar
  6. Araujo F, Sarmento B (2013) Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int J Pharm 458:128–134CrossRefPubMedGoogle Scholar
  7. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885CrossRefPubMedGoogle Scholar
  8. Artursson P, Palm K, Luthman K (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46:27–43CrossRefPubMedGoogle Scholar
  9. Audus KL, Bartel RL, Hidalgo IJ, Borchardt RT (1990) The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm Res 7:435–451CrossRefPubMedGoogle Scholar
  10. Ballet S, Betti C, Novoa A, Tömböly C, Nielsen CU, Helms HC, Lesniak A, Kleczkowska P, Chung N, Lipkowski A, Bordin B, Tourwé D, Schiller P (2014) In vitro membrane permeation studies and in vivo antinociception of glycosylated Dmt1-DALDA analogues. ACS Med Chem Lett 5(4):352–357. doi: 10.1021/ml4004765 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial-cells in tissue-culture—A model for study of blood-brain-barrier permeability. Ann Neurol 14:396–402CrossRefPubMedGoogle Scholar
  12. Bravo SA, Nielsen CU, Amstrup J, Frokjaer S, Brodin B (2004a) In-depth evaluation of Gly-Sar transport parameters as a function of culture time in the Caco-2 cell model. Eur J Pharm Sci 21:77–86CrossRefPubMedGoogle Scholar
  13. Bravo SA, Nielsen CU, Amstrup J, Frokjaer S, Brodin B (2004b) Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2. Am J Physiol Renal Physiol 286:F385–F393CrossRefPubMedGoogle Scholar
  14. Bravo SA, Nielsen CU, Frokjaer S, Brodin B (2005) Characterization of rPEPT2-mediated Gly-Sar transport parameters in the rat kidney proximal tubule cell line SKPT-0193 cl.2 cultured in basic growth media. Mol Pharm 2:98–108CrossRefPubMedGoogle Scholar
  15. Brayden DJ, Bzik VA, Lewis AL, Illum L (2012) CriticalSorb promotes permeation of flux markers across isolated rat intestinal mucosae and Caco-2 monolayers. Pharm Res 29:2543–2554CrossRefPubMedGoogle Scholar
  16. Bretschneider B, Brandsch M, Neubert R (1999) Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 16:55–61CrossRefPubMedGoogle Scholar
  17. Chen Z, Fei YJ, Anderson CM, Wake KA, Miyauchi S, Huang W, Thwaites DT, Ganapathy V (2003) Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol 546:349–361CrossRefPubMedGoogle Scholar
  18. Cohen-Kashi-Malina K, Cooper I, Teichberg VI (2012) Mechanisms of glutamate efflux at the blood-brain barrier: Involvement of glial cells. J Cereb Blood Flow Metab 32:177–189CrossRefPubMedGoogle Scholar
  19. Corti G, Maestrelli F, Cirri M, Zerrouk N, Mura P (2006) Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability. Eur J Pharm Sci 27:354–362CrossRefPubMedGoogle Scholar
  20. Crone C, Olesen SP (1982) Electrical-resistance of brain micro-vascular endothelium. Brain Res 241:49–55CrossRefPubMedGoogle Scholar
  21. Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and mass-production method to study the blood-brain-barrier invitro. J Neurochem 54:1798–1801CrossRefPubMedGoogle Scholar
  22. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: Physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127CrossRefPubMedGoogle Scholar
  23. Delie F, Rubas W (1997) A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 14:221–286CrossRefPubMedGoogle Scholar
  24. Eisenblatter T, Huwel S, Galla HJ (2003) Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res 971:221–231CrossRefPubMedGoogle Scholar
  25. Fischer SM, Brandl M, Fricker G (2011) Effect of the non-ionic surfactant Poloxamer 188 on passive permeability of poorly soluble drugs across Caco-2 cell monolayers. Eur J Pharm Biopharm 79:416–422CrossRefPubMedGoogle Scholar
  26. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226PubMedGoogle Scholar
  27. Franke H, Galla HJ, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood-brain barrier: Transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818:65–71CrossRefPubMedGoogle Scholar
  28. Franke H, Galla HJ, Beuckmann CT (2000) Primary cultures of brain microvessel endothelial cells: A valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Protoc 5:248–256CrossRefGoogle Scholar
  29. Frolund S, Marquez OC, Larsen M, Brodin B, Nielsen CU (2010) Delta-aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1). Br J Pharmacol 159:1339–1353CrossRefPubMedPubMedCentralGoogle Scholar
  30. Frolund S, Rapin N, Nielsen CU (2011) Gaboxadol has affinity for the proton-coupled amino acid transporter 1, SLC36A1 (hPAT1)—A modelling approach to determine IC(50) values of the three ionic species of gaboxadol. Eur J Pharm Sci 42:192–198CrossRefPubMedGoogle Scholar
  31. Frolund S, Langthaler L, Kall MA, Holm R, Nielsen CU (2012) Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides. Mol Pharm 9:2761–2769CrossRefPubMedGoogle Scholar
  32. Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, Ringbom C, de Boer AG, Breimer DD (2001) Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215–222CrossRefPubMedGoogle Scholar
  33. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO, Osterberg T (2005) In vitro models for the blood-brain barrier. Toxicol in Vitro 19:299–334CrossRefPubMedGoogle Scholar
  34. Gripon P, Rumin S, Urban S, Le SJ, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA 99:15655–15660CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gumbleton M, Audus KL (2001) Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci 90:1681–1698CrossRefPubMedGoogle Scholar
  36. Hakkarainen JJ, Pajander J, Laitinen R, Suhonen M, Forsberg MM (2012) Similar molecular descriptors determine the in vitro drug permeability in endothelial and epithelial cells. Int J Pharm 436:426–443CrossRefPubMedGoogle Scholar
  37. Hellinger E, Veszelka S, Toth AE, Walter F, Kittel A, Bakk ML, Tihanyi K, Hada V, Nakagawa S, Thuy DHD, Niwa M, Deli MA, Vastag M (2012) Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 82:340–351CrossRefPubMedGoogle Scholar
  38. Helms HC, Brodin B (2014) Generation of primary cultures of bovine endothelial cells and setup of cocultures with rat astrocytes. In: Milner R (ed) Cerebral angiogenesis: Methods and protocols. Humana Press, New YorkGoogle Scholar
  39. Helms HC, Waagepetersen HS, Nielsen CU, Brodin B (2010) Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J 12:759–770CrossRefPubMedPubMedCentralGoogle Scholar
  40. Helms HC, Madelung R, Waagepetersen HS, Nielsen CU, Brodin B (2012) In vitro evidence for the brain glutamate efflux hypothesis: Brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate. Glia 60:882–893CrossRefPubMedGoogle Scholar
  41. Helms HC, Hersom M, Kühlmaa L, Badolo L, Nielsen CU, Brodin B (2014) An electrically tight blood-brain barrier model displays net brain-to-blood efflux of the P-gp substrate digoxin and the BCRP substrate estrone-3-sulfate. AAPS J 16(5):1046–1055. doi:  10.1208/s12248-014-9628-1. Epub 2014 Jun 17
  42. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749CrossRefPubMedGoogle Scholar
  43. Hilgendorf C, Spahn-Langguth H, Regardh CG, Lipka E, Amidon GL, Langguth P (2000) Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 89:63–75CrossRefPubMedGoogle Scholar
  44. Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ (1998) Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 244:312–316CrossRefPubMedGoogle Scholar
  45. Jung SJ, Choi SO, Um SY, Kim JI, Choo HY, Choi SY, Chung SY (2006) Prediction of the permeability of drugs through study on quantitative structure-permeability relationship. J Pharm Biomed Anal 41:469–475CrossRefPubMedGoogle Scholar
  46. Koljonen M, Hakala KS, Ahtola-Satila T, Laitinen L, Kostiainen R, Kotiaho T, Kaukonen AM, Hirvonen J (2006) Evaluation of cocktail approach to standardise Caco-2 permeability experiments. Eur J Pharm Biopharm 64:379–387CrossRefPubMedGoogle Scholar
  47. Kunze A, Huwyler J, Poller B, Gutmann H, Camenisch G (2014) In vitro-in vivo extrapolation method to predict human renal clearance of drugs. J Pharm Sci 103:994–1001CrossRefPubMedGoogle Scholar
  48. Laitinen L, Kangas H, Kaukonen AM, Hakala K, Kotiaho T, Kostiainen R, Hirvonen J (2003) N-in-one permeability studies of heterogeneous sets of compounds across Caco-2 cell monolayers. Pharm Res 20:187–197CrossRefPubMedGoogle Scholar
  49. Larsen M, Larsen BB, Frolund B, Nielsen CU (2008) Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1: Characterization of conditions for affinity and transport experiments in Caco-2 cells. Eur J Pharm Sci 35:86–95CrossRefPubMedGoogle Scholar
  50. Larsen M, Holm R, Jensen KG, Brodin B, Nielsen CU (2009) Intestinal gaboxadol absorption via PAT1(SLC36A1): modified absorption in vivo following co-administration of L-tryptophan. Br J Pharmacol 157:1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  51. Le VM, Jigorel E, Glaise D, Gripon P, Guguen-Guillouzo C, Fardel O (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur J Pharm Sci 28:109–117CrossRefGoogle Scholar
  52. Lemmen J, Tozakidis IEP, Bele P, Galla HJ (2013a) Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation. Brain Res 1501:68–80CrossRefPubMedGoogle Scholar
  53. Lemmen J, Tozakidis IEP, Galla HJ (2013b) Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood-brain barrier. Brain Res 1491:1–13CrossRefPubMedGoogle Scholar
  54. Lennernas H (1997) Human jejunal effective permeability and its correlation with preclinical drug absorption models. J Pharm Pharmacol 49:627–638CrossRefPubMedGoogle Scholar
  55. Lentz KA, Hayashi J, Lucisano LJ, Polli JE (2000) Development of a more rapid, reduced serum culture system for Caco-2 monolayers and application to the biopharmaceutics classification system. Int J Pharm 200:41–51CrossRefPubMedGoogle Scholar
  56. Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, Hidalgo IJ (2011) Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos 39:1196–1202CrossRefPubMedGoogle Scholar
  57. Liang E, Chessic K, Yazdanian M (2000) Evaluation of an accelerated Caco-2 cell permeability model. J Pharm Sci 89:336–345CrossRefPubMedGoogle Scholar
  58. Lindahl A, Sjoberg A, Bredberg U, Toreson H, Ungell AL, Lennernas H (2004) Regional intestinal absorption and biliary excretion of fluvastatin in the rat: Possible involvement of mrp2. Mol Pharm 1:347–356CrossRefPubMedGoogle Scholar
  59. Matysiak-Budnik T, Heyman M, Candalh C, Lethuaire D, Megraud F (2002) In vitro transfer of clarithromycin and amoxicillin across the epithelial barrier: Effect of Helicobacter pylori. J Antimicrob Chemother 50:865–872CrossRefPubMedGoogle Scholar
  60. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263CrossRefPubMedGoogle Scholar
  61. Nielsen CU, Amstrup J, Steffansen B, Frokjaer S, Brodin B (2001a) Epidermal growth factor (EGF) inhibits glycylsarcosine (Gly-Sar) transport and hPepT1 expression in a human intestinal cell line. Am J Physiol Gastrointest Liver Physiol 281:G191–G199PubMedGoogle Scholar
  62. Nielsen CU, Andersen R, Brodin B, Frokjaer S, Taub ME, Steffansen B (2001b) Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity to and transport via hPepT1 in the human intestinal Caco-2 cell line. J Controlled Release 76:129–138CrossRefGoogle Scholar
  63. Nielsen CU, Carstensen M, Brodin B (2012) Carrier-mediated gamma-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers. Eur J Pharm Biopharm 81:458–462CrossRefPubMedGoogle Scholar
  64. Nohr MK, Hansen SH, Brodin B, Holm R, Nielsen CU (2014) The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers. Eur J Pharm Sci 51:1–10CrossRefPubMedGoogle Scholar
  65. Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE (2004) Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: Studies in wild-type and null mice. Pharm Res 21:1680–1685CrossRefPubMedGoogle Scholar
  66. Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24:1733–1744CrossRefPubMedGoogle Scholar
  67. Patabendige A, Skinner RA, Abbott NJ (2013) Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  68. Perriere N, Demeuse PH, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 93:279–289CrossRefPubMedGoogle Scholar
  69. Rubas W, Cromwell ME, Shahrokh Z, Villagran J, Nguyen TN, Wellton M, Nguyen TH, Mrsny RJ (1996) Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J Pharm Sci 85:165–169CrossRefPubMedGoogle Scholar
  70. Shen H, Keep RF, Hu Y, Smith DE (2005) PEPT2 (Slc15a2)-mediated unidirectional transport of cefadroxil from cerebrospinal fluid into choroid plexus. J Pharmacol Exp Ther 315:1101–1108CrossRefPubMedGoogle Scholar
  71. Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE (2007) Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos 35:1209–1216CrossRefPubMedGoogle Scholar
  72. Smetanova L, Stetinova V, Kholova D, Kvetina J, Smetana J, Svoboda Z (2009) Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine). Neuro Endocrinol Lett 30(Suppl 1):101–105PubMedGoogle Scholar
  73. Smith DE, Pavlova A, Berger UV, Hediger MA, Yang T, Huang YG, Schnermann JB (1998) Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm Res 15:1244–1249CrossRefPubMedGoogle Scholar
  74. Sondergaard HB, Bravo SA, Nielsen CU, Frokjaer S, Brodin B (2008) Cloning of the pig PEPT2 (pPEPT2) and characterization of the effects of epidermal growth factor (EGF) on pPEPT2-mediated peptide uptake in the renal porcine cell line LLC-PK1. Eur J Pharm Sci 33(4–5):332–342. doi:  10.1016/j.ejps.2008.01.001. Epub 2008 Jan 6
  75. Sun H, Chow EC, Liu S, Du Y, Pang KS (2008) The Caco-2 cell monolayer: Usefulness and limitations. Expert Opin Drug Metab Toxicol 4:395–411CrossRefPubMedGoogle Scholar
  76. Thomsen AE, Friedrichsen GM, Sorensen AH, Andersen R, Nielsen CU, Brodin B, Begtrup M, Frokjaer S, Steffansen B (2003) Prodrugs of purine and pyrimidine analogues for the intestinal di/tri-peptide transporter PepT1: affinity for hPepT1 in Caco-2 cells, drug release in aqueous media and in vitro metabolism. J Controlled Release 86:279–292CrossRefGoogle Scholar
  77. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) (2000) Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. http://www.fda.gov/cder/guidance/index.htm
  78. Vabeno J, Lejon T, Nielsen CU, Steffansen B, Chen WQ, Hui OY, Borchardt RT, Luthman K (2004a) Phe-Gly dipeptidomimetics designed for the di-/tripeptide transporters PEPT1 and PEPT2: Synthesis and biological investigations. J Med Chem 47:1060–1069CrossRefPubMedGoogle Scholar
  79. Vabeno J, Nielsen CU, Ingebrigtsen T, Lejon T, Steffansen B, Luthman K (2004b) Dipeptidomimetic ketomethylene isosteres as pro-moieties for drug transport via the human intestinal di-/tripeptide transporter hPEPT1: Design, synthesis, stability, and biological investigations. J Med Chem 47:4755–4765CrossRefPubMedGoogle Scholar
  80. Veszelka ÁKMADS (2011) Tools of modelling blood-brain barrier penetrability. In: Tihanyi K, Vastag M (eds) Solubility, delivery and ADME problems of drugs and drug-candidates. Bentham Science, Washington, pp 166–188Google Scholar
  81. Volpe DA (2008) Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J Pharm Sci 97:712–725CrossRefPubMedGoogle Scholar
  82. Walter E, Janich S, Roessler BJ, Hilfinger JM, Amidon GL (1996) HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: In vitro-in vivo correlation with permeability data from rats and humans. J Pharm Sci 85:1070–1076CrossRefPubMedGoogle Scholar
  83. Wilhelm I, Fazakas C, Krizbai IA (2011) In vitro models of the blood-brain barrier. Acta Neurobiol Exp 71:113–128Google Scholar
  84. Yang K, Köck K, Brouwer KLR (2013) Analysis of hepatic transport proteins. In: Sugiyama Y, Steffansen B (eds) Transporters in drug development. Springer-Verlag, New York, pp 201–223CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
  2. 2.Department of PharmacyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations